离散时间傅里叶变换(Discrete Time Fourier Transform)

离散时间傅里叶变换(Discrete Time Fourier Transform)

  1. g ( t ) g(t) g(t) ~ G ( f ) G(f) G(f) G ( f ) G(f) G(f) 的单边带宽是 B B B

  2. g ( t ) g(t) g(t) 做冲激采样得到 h ( t ) h(t) h(t),采样周期为 T s ≤ 1 2 B T_s \leq \frac{1}{2B} Ts2B1 (满足奈奎斯特采样定律):

    • 时域信号形式
      h ( t ) ≜ g ( t ) ⋅ ∑ n = − ∞ + ∞ δ ( t − n T s ) = ∑ n = − ∞ + ∞ g ( n T s ) ⋅ δ ( t − n T s ) \begin{aligned} h(t) &\triangleq g(t) \cdot \sum_{n=-\infty}^{+\infty} \delta(t - nT_s) \\ &= \sum_{n=-\infty}^{+\infty} g(nT_s) \cdot \delta(t - nT_s)\end{aligned} h(t)g(t)n=+δ(tnTs)=n=+g(nTs)δ(tnTs)
    • 频域信号形式
      H ( f ) ≜ 1 T s ⋅ ∑ n = − ∞ + ∞ G ( f − k T s ) = ∑ n = − ∞ + ∞ g ( n T s ) ⋅ e − j 2 π f n T s \begin{aligned} H(f) &\triangleq \frac{1}{T_s} \cdot \sum_{n=-\infty}^{+\infty} G(f - \frac{k}{T_s})\\ &= \sum_{n=-\infty}^{+\infty} g(nT_s) \cdot e^{-{\rm j}2 \pi f n T_s} \end{aligned} H(f)Ts1n=+G(fTsk)=n=+g(nTs)ej2πfnTs
  3. x [ n ] ≜ g ( n T s ) x[n] \triangleq g(nT_s) x[n]g(nTs),这里 x [ n ] x[n] x[n] 代表的是离散时间序列(忽略了采样周期),于是:
    H ( f ) = ∑ n = − ∞ + ∞ x [ n ] ⋅ e − j 2 π f n T s H(f) = \sum_{n=-\infty}^{+\infty} x[n] \cdot e^{-{\rm j}2 \pi f n T_s} H(f)=n=+x[n]ej2πfnTs

  4. 进一步,令 ω = 2 π f T s \omega = 2 \pi f T_s ω=2πfTs
    X ( ω ) ≜ H ( ω 2 π T s ) = ∑ n = − ∞ + ∞ x [ n ] ⋅ e − j ω n X(\omega) \triangleq H(\frac{\omega}{2 \pi T_s}) = \sum_{n=-\infty}^{+\infty} x[n] \cdot e^{-{\rm j}\omega n} X(ω)H(2πTsω)=n=+x[n]ejωn

    H ( f ) H(f) H(f) 的周期是 1 T s \frac{1}{T_s} Ts1,而 X ( ω ) X(\omega) X(ω) 的周期是 2 π 2\pi 2π (忽略了采样周期)。

  5. 于是得到离散时间傅里叶变换对 x [ n ] x[n] x[n] ~ X ( ω ) X(\omega) X(ω)
    X ( ω ) = ∑ n = − ∞ + ∞ x [ n ] ⋅ e − j ω n x [ n ] = 1 2 π ∫ 0 2 π X ( ω ) ⋅ e j ω n d ω X(\omega) = \sum_{n=-\infty}^{+\infty} x[n] \cdot e^{-{\rm j}\omega n} \\ x[n] = \frac{1}{2 \pi} \int_{0}^{2\pi} X(\omega) \cdot e^{{\rm j}\omega n} {\rm d} \omega X(ω)=n=+x[n]ejωnx[n]=2π102πX(ω)ejωndω

    • x [ n ] x[n] x[n] 表示 g ( t ) g(t) g(t),将连续时间信号处理转换成离散时间信号处理
    • x [ n ] x[n] x[n] X ( ω ) X(\omega) X(ω) 都忽略了采样周期 T s T_s Ts,使得在离散时间信号处理部分,无需考虑采样周期,简化了表达难度
    • 在离散时间信号处理部分结束的时候,有
      h ( t ) = ∑ n = − ∞ + ∞ x [ n ] ⋅ δ ( t − n T s ) = g ( t ) ⋅ ∑ n = − ∞ + ∞ δ ( t − n T s ) H ( f ) = X ( 2 π f T s ) = 1 T s ⋅ ∑ n = − ∞ + ∞ G ( f − k T s ) h(t) = \sum_{n = -\infty}^{+\infty}x[n] \cdot \delta(t - nT_s) = g(t) \cdot \sum_{n=-\infty}^{+\infty} \delta(t - nT_s) \\ H(f) = X(2\pi f T_s) = \frac{1}{T_s} \cdot \sum_{n=-\infty}^{+\infty} G(f - \frac{k}{T_s}) h(t)=n=+x[n]δ(tnTs)=g(t)n=+δ(tnTs)H(f)=X(2πfTs)=Ts1n=+G(fTsk)
  • 21
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值