信道估计算法

Least Square Criteria

模型

  • 输入导频序列, x ( n ) , n = 0 , 1 , ⋯   , N − 1 x(n),n=0,1,\cdots,N-1 x(n),n=0,1,,N1

  • 加性噪声序列: ω ( n ) , n = 0 , 1 , ⋯   , N − 1 \omega(n), n= 0, 1, \cdots, N-1 ω(n),n=0,1,,N1

  • 输出序列,即接收序列: y ( n ) , n = 0 , 1 , ⋯   , N − 1 y(n),n=0,1,\cdots,N-1 y(n),n=0,1,,N1

  • 信道系数: h ( n ) , n = 0 , 1 , ⋯   , N − 1 h(n), n=0,1,\cdots,N-1 h(n),n=0,1,,N1

  • 于是模型为:

y ( n ) = x ( n ) ⋅ h ( n ) + ω ( n ) y(n) = x(n) \cdot h(n) + \omega(n) y(n)=x(n)h(n)+ω(n)

推导

  • y = [ y ( 0 ) , y ( 1 ) , ⋯   , y ( N − 1 ) ] T \mathbf{y} = [y(0), y(1), \cdots,y(N-1)]^T y=[y(0),y(1),,y(N1)]T

  • x = [ x ( 0 ) , x ( 1 ) , ⋯   , x ( N − 1 ) ] T \mathbf{x} = [x(0), x(1), \cdots,x(N-1)]^T x=[x(0),x(1),,x(N1)]T

  • X = diag ( x ) \mathbf{X} = \text{diag}(\mathbf{x}) X=diag(x)

  • h = [ h ( 0 ) , h ( 1 ) , ⋯   , h ( N − 1 ) ] T \mathbf{h} = [h(0), h(1), \cdots,h(N-1)]^T h=[h(0),h(1),,h(N1)]T

  • w = [ ω ( 0 ) , ω ( 1 ) , ⋯   , ω ( N − 1 ) ] T \mathbf{w} = [\omega(0), \omega(1), \cdots, \omega(N-1)]^T w=[ω(0),ω(1),,ω(N1)]T

  • y = X h + w \mathbf{y} = \mathbf{X}\mathbf{h} + \mathbf{w} y=Xh+w

  • 代价函数: f = ∣ ∣ y − X h ^ ∣ ∣ 2 f = ||\mathbf{y} - \mathbf{X}\hat{\mathbf{h}}||^2 f=∣∣yXh^2

f = ∣ ∣ y − X h ^ ∣ ∣ 2 = ( y − X h ^ ) H ( y − X h ^ ) = y H y − y H X h ^ − h ^ H X H y + h ^ H X H X h ^ \begin{aligned} f &= ||\mathbf{y} - \mathbf{X}\hat{\mathbf{h}}||^2 \\ &= (\mathbf{y} - \mathbf{X}\hat{\mathbf{h}})^H(\mathbf{y} - \mathbf{X}\hat{\mathbf{h}})\\ &= \mathbf{y}^H \mathbf{y} - \mathbf{y}^H\mathbf{X}\hat{\mathbf{h}}- \hat{\mathbf{h}}^H\mathbf{X}^H\mathbf{y} + \hat{\mathbf{h}}^H\mathbf{X}^H\mathbf{X}\hat{\mathbf{h}} \end{aligned} f=∣∣yXh^2=(yXh^)H(yXh^)=yHyyHXh^h^HXHy+h^HXHXh^

∂ f ∂ h ^ = − y H X − ( X H y ) H + ( X H X h ^ ) H + h ^ H X H X = − 2 y H X + 2 h ^ H X H X \begin{aligned} \frac{\partial f}{\partial \hat{\mathbf{h}}} &= -\mathbf{y}^H\mathbf{X} - (\mathbf{X}^H\mathbf{y})^H + (\mathbf{X}^H\mathbf{X}\hat{\mathbf{h}})^H + \hat{\mathbf{h}}^H\mathbf{X}^H\mathbf{X}\\ &= -2\mathbf{y}^H\mathbf{X} + 2\hat{\mathbf{h}}^H\mathbf{X}^H\mathbf{X} \end{aligned} h^f=yHX(XHy)H+(XHXh^)H+h^HXHX=2yHX+2h^HXHX

∂ f ∂ h ^ = 0 \frac{\partial f}{\partial \hat{\mathbf{h}}} = 0 h^f=0,
− 2 y H X + 2 h ^ H X H X = 0 h ^ H X H X = y H X X H X h ^ = X H y h ^ = ( X H X ) − 1 X H y \begin{aligned} -2\mathbf{y}^H\mathbf{X} + 2\hat{\mathbf{h}}^H\mathbf{X}^H\mathbf{X} &= 0 \\ \hat{\mathbf{h}}^H\mathbf{X}^H\mathbf{X} &= \mathbf{y}^H\mathbf{X} \\ \mathbf{X}^H\mathbf{X}\hat{\mathbf{h}} &= \mathbf{X}^H \mathbf{y} \\ \hat{\mathbf{h}} &= (\mathbf{X}^H\mathbf{X})^{-1}\mathbf{X}^H \mathbf{y} \end{aligned} 2yHX+2h^HXHXh^HXHXXHXh^h^=0=yHX=XHy=(XHX)1XHy

如果 X \mathbf{X} X满秩( x \mathbf{x} x是导频序列,应该会满足),那么
h ^ = X − 1 y \hat{\mathbf{h}} = \mathbf{X}^{-1} \mathbf{y} h^=X1y
Mean Square Error:
E ( ∣ ∣ h − h ^ ∣ ∣ 2 ) = E ( ∣ ∣ X − 1 w ∣ ∣ 2 ) = σ ω 2 σ x 2 = 1 SNR \begin{aligned} \text{E}(||\mathbf{h} - \hat{\mathbf{h}}||^2) &= \text{E}(||\mathbf{X}^{-1}\mathbf{w}||^2)\\ &= \frac{\sigma^2_{\omega}}{\sigma^2_{x}} \\ &= \frac{1}{\text{SNR}}\end{aligned} E(∣∣hh^2)=E(∣∣X1w2)=σx2σω2=SNR1
这个与SNR的反比的关系,导致在SNR很低的时候,MSE以反比的方式放大的很大。

Minimum Mean Squared Error Criteria

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值