zonal polynomial

Definition of zonal polynomial

Let Y be an m\times m symmetric matrix with latent roots y_1,y_2,\cdots, y_m and let\kappa =(k_1,k_2,\cdots,k_m)   be a partition of k into not more than m parts, The zonal polynomial of Y corresponding to \kappa , denoted by C_\kappa(Y) is a symmetric, homogeneous polynomial of degree k in the latent roots y_1,y_2,\cdots, y_m such that:
(i) The term of highest weight in C_\kappa(Y) is y_1^{k_1}\cdots y_m^{k_m}, that is,

 C_\kappa(Y)=d_\kappa.y_1^{k_1}\cdots y_m^{k_m}+\textrm{terms of lower weight}                 (1)

where d_\kappa is a constant.
(ii) C_\kappa(Y) is an eigenfunction of the differential operator \Delta _Y, given by

\Delta _Y=\sum _{i=1}^{m}y_i^2\frac{\partial^2 }{\partial y_i^2 }+\sum_{i=1}^m \sum_{j=1,j\neq i}^m\frac{y_i^2}{y_i-y_j}\frac{\partial }{\partial y_i}                               (2)

(iii) As \kappa varies over all partitions of k , the zonal polynomials have unit coefficients in the expansion of (tr Y ),  that is,

(\textrm{tr} Y)^k=(y_1+y_2+\cdots+y_m)^k=\sum_\kappa C_\kappa(Y)                            (3)

 

Remark 1. By a symmetric, homogeneous polynomial of degree k in,we mean a polynomial which is unchanged by a permutation of the subscripts and such that every term in the polynomial has degree k.

Remark 2. By saying that C_\kappa(Y) is an eigenfunction of the differential operator \Delta _Y given by (2) we mean that

\Delta _Y C_\kappa (Y)=a C_\kappa (Y)

where a is a constant which does not depend on y_1,y_2,\cdots, y_m, (but which can depend on \kappa ) and which is called the eigenvalue of \Delta _Y corresponding to C_\kappa(Y)

\begin{align*} \Delta _Y y_1^{k_1}\cdots y_m^{k_m}&=y_1^{k_1}\cdots y_m^{k_m}\left [ \sum _{i=1}^{m}k_i(k_{i-1})+\sum_{i=1}^m \sum_{j=1,j\neq i}^m\frac{y_i k_i}{y_i-y_j}\right ]\\ &=y_1^{k_1}\cdots y_m^{k_m}\left [ \sum _{i=1}^{m}k_i^2-k+\sum_{i=1}^{m-1} \sum_{j=i+1}^m\left ( \frac{y_i k_i}{y_i-y_j}+\frac{y_j k_j}{y_j-y_i}\right )\right ]\\ &=y_1^{k_1}\cdots y_m^{k_m}\left [ \sum _{i=1}^{m} k_i^2-k+\sum _{i=1}^{m}k_i(m-i)+\sum_{i=1}^{m-1} \sum_{j=i+1}^m \frac{y_j }{y_i-y_j}\left (k_i-k_j \right )\right ]\\ &=y_1^{k_1}\cdots y_m^{k_m}\left [ \sum _{i=1}^{m} k_i(k_i-i)+k(m-1)\right ]+\textrm{lower weight terms} \end{align*}  (4)

The constant 

 a= \sum _{i=1}^{m} k_i(k_i-i)+k(m-1)=\rho_\kappa +k(m-1)                                           (5)

  About the lower weight terms:

y_1^{k_1}\cdots y_m^{k_m} \sum_{i=1}^{m-1} \sum_{j=i+1}^m \frac{y_j }{y_i-y_j}\left (k_i-k_j \right )

Considering that a zonal polynomial is symmetric and homogeneous, there are must be a y_j^{k_i}y_i^{k_j}*** for any y_i^{k_i}y_j^{k_j}***

\begin{align*} &y_i^{k_i}y_j^{k_j}\frac{y_j }{y_i-y_j}\left (k_i-k_j \right )+y_j^{k_i}y_i^{k_j}\frac{y_i}{y_j-y_i}\left (k_i-k_j \right )\\&= \frac{y_i^{k_i}y_j^{k_j+1}-y_j^{k_i}y_i^{k_j+1} }{y_i-y_j}\left (k_i-k_j \right )\\ &=\frac{(y_iy_j)^{k_j+1}(y_i^{k_i-k_j-1}-y_j^{k_i-k_j-1} )}{y_i-y_j}\left (k_i-k_j \right ) \end{align}                                 (6)

It is noted that k_i\ge k_j, if k_i-k_j is 0 or 1, the results of (6) is 0, if k_i-k_j is equal or larger than 2, the higher degree will be less than k_i, so it is a lower weight term.

From

\frac{a^n-b^n}{a-b}=\left\{\begin{matrix} 1& n=1\\a+b& n=2 \\ a^2+ab+b^2 & n=3\\ a^{n-1}+a^{n-2}b+\cdots+ab^{n-2}+b^{n-1} & n>3 \end{matrix}\right.                                               (7)

we know that, for k_i-k_j =n \ge 2, one pair of (k_i,k_j) produces k_i-k_j ones for each of following pairs

(k_i-1,k_j+1),..., (k_i-\left \lfloor n/2 \right \rfloor,k_j+\left \lfloor n/2 \right \rfloor).

Reference: Aspects of multivariate statistical theory

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值