笔记之矩阵二项式展开

一般的二项式展开为
( 1 + x ) k = ∑ s = 0 k ( k s ) x s , (1+x)^k=\sum_{s=0}^k\begin{pmatrix}k\\s \end{pmatrix}x^s, 1+x)k=s=0k(ks)xs,
把这个展开推广到矩阵领域

C κ ( I m + Y ) C κ ( I ) = ∑ s = 0 k ∑ σ ( k σ ) C σ ( Y ) C σ ( I ) {C_\kappa(I_m+Y)\over C_\kappa(I)}=\sum_{s=0}^k\sum_\sigma\begin{pmatrix}k\\\sigma \end{pmatrix}{C_\sigma (Y)\over C_\sigma (I) } Cκ(I)Cκ(Im+Y)=s=0kσ(kσ)Cσ(I)Cσ(Y)
这里的内层求和 σ \sigma σ 是整数 s s s 的所有划分。这个推广的二项式展开的系数为
( k σ ) \begin{pmatrix}k\\\sigma \end{pmatrix} (kσ)
针对 k k k 的一个划分 κ = ( k 1 , k 2 , ⋯   , k m ) \kappa=(k_1,k_2,\cdots, k_m) κ=(k1,k2,,km),定义
κ i = ( k 1 , ⋯   , k i − 1 , k i + 1 , k i + 1 , ⋯   , k m ) \kappa_i=(k_1,\cdots,k_{i-1}, k_i+1, k_{i+1},\cdots, k_m) κi=(k1,,ki1,ki+1,ki+1,,km)

κ ( i ) = ( k 1 , ⋯   , k i − 1 , k i − 1 , k i + 1 , ⋯   , k m ) \kappa^{(i)}=(k_1,\cdots,k_{i-1}, k_i-1, k_{i+1},\cdots, k_m) κ(i)=(k1,,ki1,ki1,ki+1,,km)
如果这两种划分是可行的话,即需要使以上划分的各元素是非增的。

推广的二项式展开系数按以下规则计算:

(1) ( κ ( 0 ) ) = 1 \begin{pmatrix}\kappa\\(0)\end{pmatrix}=1 (κ(0))=1, 对于所有的 κ \kappa κ;

(2) ( κ ( 1 ) ) = k \begin{pmatrix}\kappa\\(1)\end{pmatrix}=k (κ(1))=k, 对于所有 k k k 的划分 κ \kappa κ;

(3) ( κ σ ) = 0 \begin{pmatrix}\kappa\\\sigma\end{pmatrix}=0 (κσ)=0, 如果划分 σ \sigma σ 比划分 κ \kappa κ 有更多的非零值;

(4) ( κ σ ) = 0 \begin{pmatrix}\kappa\\\sigma\end{pmatrix}=0 (κσ)=0, 如果 κ < σ \kappa<\sigma κ<σ (参考书中为 κ > σ \kappa>\sigma κ>σ,可能是笔误。对两个划分的元素按顺序比较,先出现较大元素的划分为大);

(5)如果 κ \kappa κ σ \sigma σ 都是 k k k 的划分,那么
( κ σ ) = { 1 κ = σ 0 κ ≠ σ \begin{pmatrix}\kappa\\\sigma\end{pmatrix}=\begin{cases}{\begin{matrix}1 \quad \kappa=\sigma\\0 \quad \kappa\neq\sigma\end{matrix}}\end{cases} (κσ)={1κ=σ0κ=σ

(6)如果 κ \kappa κ k k k 的划分, σ \sigma σ k − 1 k-1 k1 的划分,那么只有当 σ = κ ( i ) \sigma = \kappa^{(i)} σ=κ(i) ( κ σ ) ≠ 0 \begin{pmatrix}\kappa\\\sigma\end{pmatrix} \neq 0 (κσ)=0 k i k_i ki 替换为 k i − 1 k_i-1 ki1 其它元素相同)。

例, k = 3 k=3 k=3
σ ( 0 ) ( 1 ) ( 2 ) ( 1 , 1 ) ( 3 ) ( 2 , 1 ) ( 1 , 1 , 1 ) ( 3 ) 1 3 3 0 1 0 0 κ ( 2 , 1 ) 1 3 4 / 3 5 / 3 0 1 0 ( 1 , 1 , 1 ) 1 3 0 3 0 0 1 \def\arraystretch{1.5} \begin{array}{cc|} && \begin{array}{cc|} \end{array}&&&\sigma \\ &&(0)& (1) &(2)& (1,1)& (3)& (2,1)& (1,1,1) \\ \hline &(3) &1&3&3&0&1&0&0 \\ \kappa &(2,1) &1&3&4/3&5/3&0&1&0 \\ &(1,1,1) &1&3&0&3&0&0&1 \end{array} κ(3)(2,1)(1,1,1)(0)111(1)333(2)34/30σ(1,1)05/33(3)100(2,1)010(1,1,1)001

Reference: Aspects of multivariate statistical theory,section 7.5

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值