Orthogonal Matrix Integration

H 1 H_1 H1 is an n × m n\times m n×m matrix ( n > m n > m n>m ) with orthonormal columns, so that H 1 ′ H 1 = I m H_1'H_1 = I_m H1H1=Im. The set (or space) of all such matrices H 1 H_1 H1 is called the Stiefel manfold, denoted by V m , n V_{m,n} Vm,n.Thus
V m , n = { H 1 ( n × m ) : H 1 ′ H 1 = I m } V_{m,n} =\{H_1(n\times m):H_1'H_1 = I_m\} Vm,n={H1(n×m):H1H1=Im}
There are 1 2 m ( m + 1 ) \frac{1}{2} m ( m + 1) 21m(m+1) functionally independent conditions on the m n mn mn elements of H 1 ∈ V m , n H_1\in V_{m,n} H1Vm,n implied by the equation H 1 ′ H 1 = I m H_1'H_1 = I_m H1H1=Im. Hence the elements of H 1 H_1 H1 can be regarded as the coordinates of a point on a m n − 1 2 m ( m + 1 ) mn - \frac{1}{2} m ( m + 1) mn21m(m+1)-dimensional surface in mn-dimensional Euclidean space.If H 1 = ( h i , j ) ( i = 1 , . . . , n ; j = 1 , . . . , m ) H_1 = ( h_{i,j}) ( i =1 , . . . ,n; j = 1 , . . . ,m) H1=(hi,j)(i=1,...,n;j=1,...,m) then since ∑ i = 1 n ∑ j = 1 m h i , j 2 = m \sum _{i=1}^n\sum_{j=1}^m h_{i,j}^2 = m i=1nj=1mhi,j2=m this surface is a subset of the sphere of radius m 1 / 2 m^{1/2} m1/2 in mn-dimensional space.

The 1 2 m ( m + 1 ) \frac{1}{2} m ( m + 1) 21m(m+1) functionally independent conditions:
< h j , h j > = 1 , ( j = 1 , . . . , m ) < h i , h j > = 0 , ( i > j ) \begin {aligned} &<h_j,h_j>=1, (j = 1 , . . . ,m)\\ &<h_i,h_j>=0, (i>j) \end{aligned} <hj,hj>=1,(j=1,...,m)<hi,hj>=0,(i>j)

Two special cases are the following:

a) m = n m=n m=n
V m , m ≡ O ( m ) = { H 1 ( m × m ) : H 1 ′ H 1 = I m } V_{m,m}\equiv O(m)=\{H_1(m\times m):H_1'H_1 = I_m\} Vm,mO(m)={H1(m×m):H1H1=Im}
Here the elements of O ( m ) O(m) O(m) can be regarded as the coordinates of a point on a 1 2 m ( m − 1 ) \frac{1}{2} m ( m - 1) 21m(m1)-dimensional surface in Euclidean m 2 m^2 m2-space and the surface is a subset of the sphere of radius m 1 / 2 m^{1/2} m1/2 in m 2 m^2 m2-space.

a) m = 1 m=1 m=1
V 1 , n ≡ S n = { H 1 ( n × 1 ) : H 1 ′ H 1 = 1 } V_{1,n}\equiv S_n=\{H_1(n\times 1):H_1'H_1 = 1\} V1,nSn={H1(n×1):H1H1=1}
the unit sphere in R n R^n Rn. This is, of course, an n − 1 n - 1 n1 dimensional surface in R n R^n Rn.

THEOREM 1
∫ V m , n H 1 ′ d H 1 = 2 m π m n / 2 Γ m ( 1 2 n ) (1) \int_{{\rm {\bf V_{m,n}}} } {{\rm {\bf H_1'dH_1}}} = \frac{2^m\pi ^{mn / 2}}{\Gamma _m (\frac{1}{2}n)} \tag 1 Vm,nH1dH1=Γm(21n)2mπmn/2(1)

Proof: Let Z Z Z be an n × m , ( n ≥ m ) n\times m,(n\ge m) n×m,(nm) random matrix whose elements are
all independent N ( 0 , 1 ) N(0,1) N(0,1) random variables. The density function of Z Z Z (that is,
the joint density function of the mn elements of Z Z Z ) is

f ( Z ) = ( 2 π ) − m n / 2 e x p ( − 1 2 ∑ i = 1 n ∑ j = 1 m Z i j 2 ) = ( 2 π ) − m n / 2 e t r ( − 1 2 Z ′ Z ) (2) \begin {aligned} f({\rm {\bf Z}}) &={\left( {2\pi } \right)^{-mn / 2}}\mathrm{exp}\left( - \frac{1}{2}\sum_{i=1}^n\sum_{j=1}^m Z_{ij}^2 \right)\\ &={\left( {2\pi } \right)^{-mn / 2}}\mathrm{etr}\left( { - \frac{1}{2}{\rm {\bf Z'Z}}} \right) \end{aligned} \tag 2 f(Z)=(2π)mn/2exp(21i=1nj=1mZij2)=(2π)mn/2etr(21ZZ)(2)
It is very known that
∫ R n × m f ( Z ) ( d Z ) = 1 \int_{R^{n\times m}} f({\rm {\bf Z}})(d{\bf Z})=1 Rn×mf(Z)(dZ)=1
That is
∫ ⋯ ∫ Z i j ∈ ( − ∞ , ∞ ) e t r ( − 1 2 Z ′ Z ) ( d Z ) = ( 2 π ) m n / 2 {\int\cdots\int}_{Z_{ij}\in(-\infty,\infty)} \mathrm{etr}\left( { - \frac{1}{2}{\rm {\bf Z'Z}}} \right)(d{\bf Z})={\left( {2\pi } \right)^{mn / 2}} Zij(,)etr(21ZZ)(dZ)=(2π)mn/2

where ( d Z ) = ∏ i j d Z i j , ( i = 1 , . . . , n , j = 1 , . . . , m ) (d{\bf Z})=\prod_{ij}d Z_{ij},(i=1,...,n, j=1,...,m) (dZ)=ijdZij,(i=1,...,n,j=1,...,m).

Put Z = H 1 T {\bf Z} = H_1 T Z=H1T, where H 1 ∈ V m , n H_1\in V_{m,n} H1Vm,n and T T T is upper-triangular with positive diagonal elements, then from 2.13 of ref1
( d Z ) = ∏ i = 1 m t i i n − i ( d T ) ( H 1 ′ d H 1 ) (3) \left( {d{\rm {\bf Z}}} \right) = \prod\limits_{i = 1}^m {t_{ii}^{n - i} } \left( {dT} \right)\left( {H_1'dH_1} \right) \tag 3 (dZ)=i=1mtiini(dT)(H1dH1)(3)

∫ e t r ( − 1 2 Z ′ Z ) ( d Z ) = ∫ e t r ( − 1 2 T ′ T ) ∏ i = 1 m t i i n − i ( d T ) ∫ ( H 1 ′ d H 1 ) \int \mathrm{etr}\left( { - \frac{1}{2}{\rm {\bf Z'Z}}} \right)(d{\bf Z})= \int \mathrm{etr}\left( { - \frac{1}{2}{\rm {\bf T'T}}} \right)\prod\limits_{i = 1}^m {t_{ii}^{n - i} } \left( {dT} \right)\int\left( {H_1'dH_1} \right) etr(21ZZ)(dZ)=etr(21TT)i=1mtiini(dT)(H1dH1)

∫ e t r ( − 1 2 T ′ T ) ∏ i = 1 m t i i n − i ( d T ) = ∏ i < j , j = 2 m exp ⁡ ( − 1 2 t i j 2 ) d t i j ∫ ∏ i = 1 m exp ⁡ ( − 1 2 t i i 2 ) t i i n − i d t i i = ( 2 π ) m ( m − 1 ) / 4 ∏ i = 1 m ∫ s i > 0 exp ⁡ ( − s i ) ( 2 s i ) ( n − i − 1 ) / 2 d s i = π m ( m − 1 ) / 4 ∏ i = 1 m Γ [ n − i + 1 2 ] 2 m ( m − 1 ) / 4 ∏ i = 1 m 2 ( n − i − 1 ) / 2 = Γ m ( n 2 ) ⋅ 2 m n / 2 − m . \begin {aligned} &\int \mathrm{etr}\left( { - \frac{1}{2}{\rm {\bf T'T}}} \right)\prod\limits_{i = 1}^m {t_{ii}^{n - i} } \left( {dT} \right)\\&= \prod_{i<j,j=2}^m\exp(-\frac{1}{2}t_{ij}^2)dt_{ij}\int \prod_{i=1}^m\exp(-\frac{1}{2}t_{ii}^2)t_{ii}^{n - i}dt_{ii}\\ &=(2\pi)^{m(m-1)/4} \prod_{i=1}^m\int_{s_i>0}\exp(-s_i)(2s_i)^{(n-i-1)/2}ds_i\\ &=\pi^{m(m-1)/4} \prod_{i=1}^m\Gamma \left [\frac{n-i+1}{2}\right ]2^{m(m-1)/4}\prod_{i=1}^m 2^{(n-i-1)/2}\\ &=\Gamma_m(\frac{n}{2})\cdot 2^{mn/2-m}. \end{aligned} etr(21TT)i=1mtiini(dT)=i<j,j=2mexp(21tij2)dtiji=1mexp(21tii2)tiinidtii=(2π)m(m1)/4i=1msi>0exp(si)(2si)(ni1)/2dsi=πm(m1)/4i=1mΓ[2ni+1]2m(m1)/4i=1m2(ni1)/2=Γm(2n)2mn/2m.
Then
∫ V m , n H 1 ′ d H 1 = 2 m π m n / 2 Γ m ( 1 2 n ) \int_{{\rm {\bf V_{m,n}}} } {{\rm {\bf H_1'dH_1}}} = \frac{2^m\pi ^{mn / 2}}{\Gamma _m (\frac{1}{2}n)} Vm,nH1dH1=Γm(21n)2mπmn/2
End of proof. ♢ \diamondsuit

Here
Γ m ( n 2 ) = π m ( m − 1 ) / 4 ∏ i = 1 m Γ [ n − i + 1 2 ] (4) \Gamma_m(\frac{n}{2})=\pi^{m(m-1)/4} \prod_{i=1}^m\Gamma \left [\frac{n-i+1}{2}\right ]\tag 4 Γm(2n)=πm(m1)/4i=1mΓ[2ni+1](4)
Like Γ ( n ) = ∫ x > 0 e − x x n d x \Gamma(n)=\int_{x>0}e^{-x}x^n dx Γ(n)=x>0exxndx
Γ m ( n ) = ∫ A > 0 e t r ( − A ) ( det ⁡ A ) ( n − ( m + 1 ) / 2 ) d A (5) \Gamma_m(n)=\int_{A>0} \mathrm {etr}(-A)(\det A)^{(n-(m+1)/2)}dA\tag 5 Γm(n)=A>0etr(A)(detA)(n(m+1)/2)dA(5)
where A is a positive m × m m\times m m×m matrix. Using A = T ′ T A=T'T A=TT and
d A = 2 m ∏ i = 1 m t i i m − i + 1 ( d T ) (6) dA=2^m\prod_{i=1}^m t_{ii}^{m-i+1}(dT)\tag 6 dA=2mi=1mtiimi+1(dT)(6)

Γ m ( n ) = ∏ i < j , j = 2 m exp ⁡ ( − t i j 2 ) d t i j ∏ i = 1 m ∫ 2 exp ⁡ ( − t i i 2 ) t i i 2 n − i d t i i = π m ( m − 1 ) / 4 ∏ i = 1 m ∫ u i > 0 exp ⁡ ( − u i ) u i n − i / 2 − 1 / 2 d u i = π m ( m − 1 ) / 4 ∏ i = 1 m Γ ( n − i / 2 + 1 / 2 ) \begin{aligned} \Gamma_m(n)&= \prod_{i<j,j=2}^m\exp(-t_{ij}^2)dt_{ij} \prod_{i=1}^m\int 2\exp(-t_{ii}^2)t_{ii}^{2n - i}dt_{ii}\\ &=\pi^{m(m-1)/4}\prod_{i=1}^m\int_{u_i>0} \exp(-u_{i})u_{i}^{n - i/2-1/2}du_{i}\\ &=\pi^{m(m-1)/4}\prod_{i=1}^m\Gamma(n-i/2+1/2) \end{aligned} Γm(n)=i<j,j=2mexp(tij2)dtiji=1m2exp(tii2)tii2nidtii=πm(m1)/4i=1mui>0exp(ui)uini/21/2dui=πm(m1)/4i=1mΓ(ni/2+1/2)

THEOREM 1C (for complex)
∫ V m , n H 1 H d H 1 = 2 m π m n Γ ~ m ( n ) (7) \int_{{\rm {\bf V_{m,n}}} } {{\rm {\bf H_1^HdH_1}}} = \frac{2^m\pi ^{mn}}{\widetilde{\Gamma}_m (n)}\tag 7 Vm,nH1HdH1=Γ m(n)2mπmn(7)

Proof: Let Z Z Z be an n × m , ( n ≥ m ) n\times m,(n\ge m) n×m,(nm) random matrix whose elements are
all independent N ( 0 , 1 ) N(0,1) N(0,1) random complex variables with real and imagine part of N ( 0 , 1 / 2 ) N(0,1/2) N(0,1/2) . The density function of Z Z Z (that is, the joint density function of the mn elements of Z Z Z ) is

f ( Z ) = ( π ) − m n e x p ( − ∑ i = 1 n ∑ j = 1 m Z i j ∗ Z i j ) = ( π ) − m n e t r ( − Z H Z ) (8) \begin {aligned} f({\rm {\bf Z}}) &={\left( {\pi } \right)^{-mn}} \mathrm{exp}\left( - \sum_{i=1}^n\sum_{j=1}^m Z_{ij}^*Z_{ij} \right)\\ &={\left( {\pi } \right)^{-mn}} \mathrm{etr}\left( { - { {\bf Z^HZ}}} \right) \end{aligned}\tag 8 f(Z)=(π)mnexp(i=1nj=1mZijZij)=(π)mnetr(ZHZ)(8)
It is very known that
∫ C n × m f ( Z ) ( d Z ) = 1 \int_{\mathcal{C}^{n\times m}} f({\rm {\bf Z}})(d{\bf Z})=1 Cn×mf(Z)(dZ)=1
That is
∫ ⋯ ∫ Z i j e t r ( − Z H Z ) ( d Z ) = ( π ) m n {\int\cdots\int}_{Z_{ij}} \mathrm{etr}\left( { - {\rm {\bf Z^HZ}}} \right)(d{\bf Z})={\left( {\pi } \right)^{mn }} Zijetr(ZHZ)(dZ)=(π)mn
where ( d Z ) = ⋀ i j d Z i j , ( i = 1 , . . . , n , j = 1 , . . . , m ) (d{\bf Z})=\bigwedge_{ij}d Z_{ij},(i=1,...,n, j=1,...,m) (dZ)=ijdZij,(i=1,...,n,j=1,...,m).

Put Z = H 1 T {\bf Z} = H_1 T Z=H1T, where H 1 ∈ V m , n H_1\in V_{m,n} H1Vm,n and T T T is upper-triangular with positive diagonal elements, then from 2.13 of ref1
( d Z ) = ∏ i = 1 m t i i 2 n − 2 i + 1 ( d T ) ( H 1 H d H 1 ) (9) \left( {d{\rm {\bf Z}}} \right) = \prod\limits_{i = 1}^m {t_{ii}^{2n - 2i+1} } \left( {dT} \right)\left( {H_1^HdH_1} \right)\tag 9 (dZ)=i=1mtii2n2i+1(dT)(H1HdH1)(9)

∫ e t r ( − Z H Z ) ( d Z ) = ∫ e t r ( − T H T ) ∏ i = 1 m t i i 2 n − 2 i + 1 ( d T ) ∫ ( H 1 H d H 1 ) \int \mathrm{etr}\left( { - {\rm {\bf Z^HZ}}} \right)(d{\bf Z})= \int \mathrm{etr}\left( { - {\rm {\bf T^HT}}} \right)\prod\limits_{i = 1}^m {t_{ii}^{2n - 2i+1} } \left( {dT} \right)\int\left( {H_1^HdH_1} \right) etr(ZHZ)(dZ)=etr(THT)i=1mtii2n2i+1(dT)(H1HdH1)

∫ e t r ( − T H T ) ∏ i = 1 m t i i 2 n − 2 i + 1 ( d T ) = ∏ i < j , i = 1 , j = 2 m exp ⁡ ( − ℜ ( t i j ) 2 ) d ℜ ( t i j ) exp ⁡ ( − ℑ ( t i j ) 2 ) d ℑ ( t i j ) ∫ ∏ i = 1 m exp ⁡ ( − t i i 2 ) t i i 2 n − 2 i + 1 d t i i = ( π ) m ( m − 1 ) / 2 ∏ i = 1 m ∫ s i > 0 2 − 1 exp ⁡ ( − s i ) ( s i ) n − i d s i = π m ( m − 1 ) / 2 ∏ i = 1 m Γ [ n − i + 1 ] 2 − m = Γ ~ m ( n ) . 2 − m . \begin {aligned} &\int \mathrm{etr}\left( { - {\rm {\bf T^HT}}} \right)\prod\limits_{i = 1}^m {t_{ii}^{2n - 2i+1} } \left( {dT} \right)\\&= \prod_{i<j,i=1,j=2}^m\exp(-\Re(t_{ij})^2)d\Re(t_{ij})\exp(-\Im(t_{ij})^2)d\Im(t_{ij})\int \prod_{i=1}^m\exp(-t_{ii}^2)t_{ii}^{2n - 2i+1}dt_{ii}\\ &=(\pi)^{m(m-1)/2} \prod_{i=1}^m\int_{s_i>0}2^{-1}\exp(-s_i)(s_i)^{n-i}ds_i\\ &=\pi^{m(m-1)/2} \prod_{i=1}^m\Gamma \left [{n-i+1}\right ]2^{-m}\\ &=\widetilde{\Gamma}_m(n).2^{-m}. \end{aligned} etr(THT)i=1mtii2n2i+1(dT)=i<j,i=1,j=2mexp((tij)2)d(tij)exp((tij)2)d(tij)i=1mexp(tii2)tii2n2i+1dtii=(π)m(m1)/2i=1msi>021exp(si)(si)nidsi=πm(m1)/2i=1mΓ[ni+1]2m=Γ m(n).2m.
Note: Here t i j , i < j t_{ij},i<j tij,i<j are complex, t i i t_{ii} tii are real.
Then
∫ V m , n H 1 H d H 1 = 2 m π m n Γ ~ m ( n ) \int_{{\rm {\bf V_{m,n}}} } {{\rm {\bf H_1^HdH_1}}} = \frac{2^m\pi ^{mn}}{\widetilde{\Gamma} _m (n)} Vm,nH1HdH1=Γ m(n)2mπmn
End of proof. ♢ ♢ \diamondsuit \diamondsuit

Here
Γ ~ m ( n ) = π m ( m − 1 ) / 2 ∏ i = 1 m Γ [ n − i + 1 ] (10) \widetilde{\Gamma}_m(n)=\pi^{m(m-1)/2} \prod_{i=1}^m\Gamma \left [{n-i+1}\right ]\tag {10} Γ m(n)=πm(m1)/2i=1mΓ[ni+1](10)
Like Γ ( n ) = ∫ x > 0 e − x x n d x \Gamma(n)=\int_{x>0}e^{-x}x^n dx Γ(n)=x>0exxndx
Γ ~ m ( n ) = ∫ A > 0 e t r ( − A ) ( det ⁡ A ) n − m d A (11) \begin{aligned} \widetilde{\Gamma}_m(n)=\int_{A>0}\mathrm {etr}(-A)(\det A)^{n-m}dA \end{aligned} \tag {11} Γ m(n)=A>0etr(A)(detA)nmdA(11)
where A is a positive m × m m\times m m×m complex matrix. Using A = T ′ T A=T'T A=TT and
d A = 2 m ∏ i = 1 m t i i 2 m − 2 i + 1 ( d T ) det ⁡ A = ∏ i = 1 m t i i 2 (12) \begin{aligned} dA=2^m\prod_{i=1}^m t_{ii}^{2m-2i+1}(dT)\\ \det A=\prod_{i=1}^m t_{ii}^2 \tag {12} \end{aligned} dA=2mi=1mtii2m2i+1(dT)detA=i=1mtii2(12)

Γ ~ m ( n ) = ∏ i < j , i = 1 , j = 2 m exp ⁡ ( − ∣ t i j ∣ 2 ) d ℜ ( t i j ) d ℑ ( t i j ) ∏ i = 1 m ∫ 2 exp ⁡ ( − t i i 2 ) t i i 2 n − 2 i + 1 d t i i = π m ( m − 1 ) / 2 ∏ i = 1 m ∫ u i > 0 exp ⁡ ( − u i ) u i n − i d u i = π m ( m − 1 ) / 2 ∏ i = 1 m Γ ( n − i + 1 ) \begin{aligned} \widetilde{\Gamma}_m(n)&= \prod_{i<j,i=1,j=2}^m\exp(-|t_{ij}|^2)d\Re(t_{ij})d\Im(t_{ij}) \prod_{i=1}^m\int 2\exp(-t_{ii}^2)t_{ii}^{2n - 2i+1}dt_{ii}\\ &=\pi^{m(m-1)/2}\prod_{i=1}^m\int_{u_i>0} \exp(-u_{i})u_{i}^{n - i}du_{i} \\ &=\pi^{m(m-1)/2}\prod_{i=1}^m\Gamma(n-i+1) \end{aligned} Γ m(n)=i<j,i=1,j=2mexp(tij2)d(tij)d(tij)i=1m2exp(tii2)tii2n2i+1dtii=πm(m1)/2i=1mui>0exp(ui)uinidui=πm(m1)/2i=1mΓ(ni+1)

Derivation of (6): for A = T ′ T A=T'T A=TT.
a 11 = t 11 2 d a 11 = 2 t 11 d t 11 a 21 = t 12 t 11 d a 21 = t 11 d t 12 + ∗ a 31 = t 13 t 11 d a 31 = t 11 d t 13 + ∗ ⋯ ⋯ a m 1 = t 1 m t 11 d a m 1 = t 11 d t 1 m + ∗ a 22 = t 12 2 + t 22 2 d a 22 = 2 t 22 d t 22 + ∗ a 32 = t 13 t 12 + t 23 t 22 d a 32 = t 22 d t 23 + ∗ ⋯ ⋯ a m 2 = t 1 m t 12 + t 2 m t 22 d a m 2 = t 22 d t 2 m + ∗ ⋯ ⋯ a m m = t m m 2 + ∗ d a m m = 2 t m m d t m m + ∗ \begin{aligned} \begin{array}{ll} a_{11}=t_{11}^2 & da_{11}=2t_{11}dt_{11}\\ a_{21}=t_{12}t_{11} & da_{21}=t_{11}dt_{12}+*\\ a_{31}=t_{13}t_{11} & da_{31}=t_{11}dt_{13}+*\\ \cdots &\cdots\\ a_{m1}=t_{1m}t_{11} & da_{m1}=t_{11}dt_{1m}+*\\ a_{22}=t_{12}^2+t_{22}^2 & da_{22}=2t_{22}dt_{22}+*\\ a_{32}=t_{13}t_{12}+ t_{23}t_{22}& da_{32}=t_{22}dt_{23}+*\\ \cdots &\cdots\\ a_{m2}=t_{1m}t_{12}+ t_{2m}t_{22}& da_{m2}=t_{22}dt_{2m}+*\\ \cdots &\cdots\\ a_{mm}=t_{mm}^2+* & da_{mm}=2t_{mm}dt_{mm}+* \end{array} \end{aligned} a11=t112a21=t12t11a31=t13t11am1=t1mt11a22=t122+t222a32=t13t12+t23t22am2=t1mt12+t2mt22amm=tmm2+da11=2t11dt11da21=t11dt12+da31=t11dt13+dam1=t11dt1m+da22=2t22dt22+da32=t22dt23+dam2=t22dt2m+damm=2tmmdtmm+
d A = 2 m ∏ i = 1 m t i i m − i + 1 ⋀ i ≤ j , j = 1 m d t i j \begin{aligned} dA=2^m\prod_{i=1}^m t_{ii}^{m-i+1}\bigwedge_{i\le j,j=1}^m dt_{ij}\end{aligned} dA=2mi=1mtiimi+1ij,j=1mdtij
Derivation of (12):
For a complex matrix A = T H T A=T^HT A=THT,
a i i a_{ii} aii are real, d a i i = 2 t i i d t i i + ∗ da_{ii}=2t_{ii}dt_{ii}+* daii=2tiidtii+,
a i j = x i j + y i j , i > j a_{ij}=x_{ij}+y_{ij}, i> j aij=xij+yij,i>j are complex,including real part x i j x_{ij} xij and imagine part y i j y_{ij} yij,
d x i j = t i i d ℜ ( t j i ) + ∗ , d y i j = − t i i d ℑ ( t j i ) + ∗ \begin{aligned}dx_{ij}=t_{ii}d\Re({t}_{ji})+*,\\dy_{ij}=-t_{ii}d\Im({t}_{ji})+* \end{aligned} dxij=tiid(tji)+,dyij=tiid(tji)+
So
d A = 2 m ∏ i = 1 m t i i 2 m − 2 i + 1 ⋀ i ≤ j , j = 1 m d t i j \begin{aligned} dA=2^m\prod_{i=1}^m t_{ii}^{2m-2i+1}\bigwedge_{i\le j,j=1}^m dt_{ij}\end{aligned} dA=2mi=1mtii2m2i+1ij,j=1mdtij

THEOREM 2.1.13. Let Z Z Z be an n × m , ( n ≥ m ) n\times m, ( n \ge m ) n×m,(nm) matrix of rank m and
write Z = H 1 T Z= H_1T Z=H1T, where H 1 H_1 H1 is an n × m n\times m n×m matrix with H 1 ′ H 1 = I m H_1'H_1=I_m H1H1=Im, and T is an m × m m\times m m×m upper-triangular matrix with positive diagonal elements. Let H 2 H_2 H2 (a function of H 1 H_1 H1 ) be an n × ( n − m ) n \times ( n - m ) n×(nm) matrix such that H = [ H 1 : H 2 ) H = [ H_1 : H_2) H=[H1:H2)is an orthogonal n × n n \times n n×n matrix and write H = [ h 1 , . . . h m : h m + 1 , . . . h n ] H=[h_1,. .. h_m: h_{m+1},. . . h_n] H=[h1,...hm:hm+1,...hn], where h 1 , . . . h m h_1,. .. h_m h1,...hm are the columns of H 1 H_1 H1 and h m + 1 , . . . h n h_{m+1},. . . h_n hm+1,...hn are the columns of H 2 H_2 H2. Then
( d Z ) = ∏ i = 1 m t i i n − i ( d T ) ( H 1 ′ d H 1 ) (13) \begin{aligned} \left( {d{\rm {\bf Z}}} \right) = \prod\limits_{i = 1}^m {t_{ii}^{n - i} } \left( {dT} \right)\left( {H_1'dH_1} \right) \end{aligned} \tag {13} (dZ)=i=1mtiini(dT)(H1dH1)(13)

Proof. Z = H 1 T ⟹ d Z = d H 1 . T + H 1 . d T Z= H_1T\Longrightarrow dZ=dH_1.T+H_1.dT Z=H1TdZ=dH1.T+H1.dT hence
H ′ d Z = [ H 1 ′ H 2 ′ ¨ ] d Z = [ H 1 ′ d H 1 T + H 1 ′ H 1 d T H 2 ′ d H 1 T + H 2 ′ H 1 d T ] = [ H 1 ′ d H 1 T + d T H 2 ′ d H 1 T ] \begin {aligned} H'{d{\bf Z}}&= \begin{bmatrix} H_1'\\ \ddot{H_2'} \end{bmatrix} d {\bf Z}=\begin{bmatrix} H_1'dH_1T+H_1'H_1dT\\ H_2'dH_1T+H_2'H_1dT \end{bmatrix} \\ &=\begin{bmatrix} H_1'dH_1T+dT\\ H_2'dH_1T \end{bmatrix} \end{aligned} HdZ=[H1H2¨]dZ=[H1dH1T+H1H1dTH2dH1T+H2H1dT]=[H1dH1T+dTH2dH1T]

since H 1 ′ H 1 = I m , H 1 ′ H 2 = 0 H_1'H_1=I_m, H_1'H_2=0 H1H1=Im,H1H2=0. By Theorem 2.1.4 the exterior product of the elements on the left side of (13) is
( H ′ d Z ) = ( det ⁡ H ′ ) m ( d Z ) = ( d Z ) (13.1) \begin {aligned} \left( H'{d{\rm {\bf Z}}} \right) = (\det H')^m (d{\bf Z})=(d{\bf Z}) \end{aligned}\tag {13.1} (HdZ)=(detH)m(dZ)=(dZ)(13.1)
Proof of (13.1).
( d Z ) = ⋀ j = 1 m ⋀ i = 1 n d Z i j = ⋀ j = 1 m ( d Z j ) \begin {aligned} \left( {d{\rm {\bf Z}}} \right) =\bigwedge_{j=1}^m\bigwedge_{i=1}^n dZ_{ij}=\bigwedge_{j=1}^m (dZ_{j}) \end{aligned} (dZ)=j=1mi=1ndZij=j=1m(dZj)
Considering exterior product of the same element d x Λ d x = 0 dx\Lambda dx=0 dxΛdx=0, here d Z i j Λ d Z i j = 0 dZ_{ij}\Lambda dZ_{ij}=0 dZijΛdZij=0, and the definition of determinant (the algebraic sum of products of different rows and column of the matrix),

( H ′ d Z j ) = ( h 11 d Z 1 j + h 21 d Z 2 j + ⋯ + h n 1 d Z n j h 12 d Z 1 j + h 22 d Z 2 j + ⋯ + h n 2 d Z n j ⋯ h 1 n d Z 1 j + h 2 n d Z 2 j + ⋯ + h n n d Z n j ) = det ⁡ ( H ) ⋀ i = 1 n d Z i j = det ⁡ ( H ) ( d Z j ) \begin {aligned} (H'dZ_{j}) &=\begin{pmatrix} h_{11}dZ_{1j}+h_{21}dZ_{2j}+\cdots+h_{n1}dZ_{nj}\\ h_{12}dZ_{1j}+h_{22}dZ_{2j}+\cdots+h_{n2}dZ_{nj}\\ \cdots\\ h_{1n}dZ_{1j}+h_{2n}dZ_{2j}+\cdots+h_{nn}dZ_{nj}\\ \end{pmatrix}\\ &=\det(H)\bigwedge_{i=1}^n dZ_{ij}=\det(H)( dZ_{j}) \end{aligned} (HdZj)=h11dZ1j+h21dZ2j++hn1dZnjh12dZ1j+h22dZ2j++hn2dZnjh1ndZ1j+h2ndZ2j++hnndZnj=det(H)i=1ndZij=det(H)(dZj)

( H ′ d Z ) = ⋀ j = 1 m ( H ′ d Z j ) = det ⁡ ( H ) m ( d Z ) = ( d Z ) \begin{aligned} \left( H'{d{\rm {\bf Z}}} \right) =\bigwedge_{j=1}^m (H'dZ_{j})=\det(H)^m(d\rm{Z})=(d\rm{Z}) \end{aligned} (HdZ)=j=1m(HdZj)=det(H)m(dZ)=(dZ)
for det ⁡ ( H ) = 1 \det (H)=1 det(H)=1.
End of proof of (13.1).

First consider the matrix H 2 ′ d H 1 T H_2' dH_1 T H2dH1T. The ( j − m ) (j- m) (jm)th row of H 2 ′ d H 1 T H_2' dH_1 T H2dH1T is
( h j ′ d h 1 , ⋯   , , , . . . , h j ′ d h m ) T , ( m + 1 ≤ j ≤ n ) . \begin{aligned}\begin{matrix} (h_j'dh_1,\cdots, ,,..., h_j'dh_m)T, &&&( m + 1 \le j \le n ) . \end{matrix}\end{aligned} (hjdh1,,,,...,hjdhm)T,(m+1jn).
( ( h j ′ d h 1 , ⋯   , , , . . . , h j ′ d h m ) T ) = ( det ⁡ T ) ⋀ i = 1 m h j ′ d h i . \begin{aligned} ((h_j'dh_1,\cdots, ,,..., h_j'dh_m)T)=(\det T)\bigwedge_{i=1}^m h_j'dh_i. \end{aligned} ((hjdh1,,,,...,hjdhm)T)=(detT)i=1mhjdhi.
so
( H 2 ′ d H 1 T ) = ( det ⁡ T ) n − m ⋀ j = m + 1 n ⋀ i = 1 m h j ′ d h i . (13.2) \begin{aligned} (H_2' dH_1 T)=(\det T)^{n-m} \bigwedge_{j=m+1}^n \bigwedge_{i=1}^m h_j'dh_i. \end{aligned}\tag{13.2} (H2dH1T)=(detT)nmj=m+1ni=1mhjdhi.(13.2)

Now consider the upper matrix H 1 ′ d H 1 T + d T H_1' dH_1 T+dT H1dH1T+dT. First note that since H 1 ′ H 1 = I m H_1' H_1=I_m H1H1=Im, we have
H 1 ′ d H 1 + d H 1 ′ . H 1 = 0 \begin{aligned} H_1' dH_1+dH_1'.H_1=0 \end{aligned} H1dH1+dH1.H1=0
so that
H 1 ′ d H 1 = − d H 1 ′ . H 1 = − ( H 1 ′ d H 1 ) ′ , (13.2) \begin{aligned} H_1' dH_1=-dH_1'.H_1=-(H_1' dH_1)', \end{aligned}\tag {13.2} H1dH1=dH1.H1=(H1dH1),(13.2)
and hence H 1 ′ d H 1 H_1' dH_1 H1dH1, is skew-symmetric:
H 1 ′ d H 1 = [ 0 − h 2 ′ d h 1 ⋯ − h m ′ d h 1 h 2 ′ d h 1 0 ⋯ − h m ′ d h 2 h 3 ′ d h 1 h 3 ′ d h 2 ⋯ − h m ′ d h 3 ⋮ ⋮ ⋮ h m ′ d h 1 h m ′ d h 2 0 ] (13.3) \begin{aligned} H_1' dH_1=\begin{bmatrix} 0 & -h_2'dh_1 & \cdots & -h_m'dh_1\\ h_2'dh_1 & 0 & \cdots & -h_m'dh_2\\ h_3'dh_1 & h_3'dh_2 & \cdots & -h_m'dh_3\\ \vdots & \vdots & &\vdots\\ h_m'dh_1 & h_m'dh_2 & &0 \end{bmatrix} \end{aligned}\tag{13.3} H1dH1=0h2dh1h3dh1hmdh1h2dh10h3dh2hmdh2hmdh1hmdh2hmdh30(13.3)

Postmultiplying this by the upper-triangular matrix T gives the following matrix, where only the subdiagonal elements are given, and where, in addition, terms of the form h i ′ d h j h_i' d h_j hidhj are ignored if they have appeared already in a previous column:
(My comment: h i ′ d h j h_i' d h_j hidhj can be considered as a direction, the exterior product of the same directional vector is 0.)
H 1 ′ d H 1 T = [ 0 ∗ ⋯ ∗ ∗ h 2 ′ d h 1 t 11 ∗ ⋯ ∗ ∗ h 3 ′ d h 1 t 11 h 3 ′ d h 2 t 22 + ∗ ⋯ ∗ ∗ ⋮ ⋮ ⋮ h m ′ d h 1 t 11 h m ′ d h 2 t 22 + ∗ − h m ′ d h m t m − 1 , m − 1 + ∗ ∗ ] (13.4) \begin{aligned} H_1' dH_1T=\begin{bmatrix} 0 & * & \cdots & *& *\\ h_2'dh_1t_{11} & * & \cdots & *& *\\ h_3'dh_1t_{11} & h_3'dh_2t_{22}+* & \cdots & *& *\\ \vdots & \vdots & &\vdots\\ h_m'dh_1t_{11} & h_m'dh_2t_{22}+* & &-h_m'dh_mt_{m-1,m-1}+*& * \end{bmatrix} \end{aligned}\tag{13.4} H1dH1T=0h2dh1t11h3dh1t11hmdh1t11h3dh2t22+hmdh2t22+hmdhmtm1,m1+(13.4)

Column by column, the exterior product of the subdiagonal elements (under the diagonal)of H 1 ′ d H 1 T + d T H_1' dH_1 T+dT H1dH1T+dT is (remember that d T dT dT is upper-triangular)

t 11 m − 1 t 22 m − 2 ⋯ t m − 1 , m − 1 ⋀ i = 1 m ⋀ j = i + 1 m h j ′ d h i . \begin{aligned} t_{11}^{m-1}t_{22}^{m-2}\cdots t_{m-1,m-1}\bigwedge_{i=1}^m\bigwedge_{j=i+1}^m h_j'dh_i. \end{aligned} t11m1t22m2tm1,m1i=1mj=i+1mhjdhi.
( H 1 ′ d H 1 T + d T ) = t 11 m − 1 t 22 m − 2 ⋯ t m − 1 , m − 1 ⋀ i = 1 m ⋀ j = i + 1 m h j ′ d h i ( d T ) . \begin{aligned} (H_1' dH_1T+dT)=t_{11}^{m-1}t_{22}^{m-2}\cdots t_{m-1,m-1}\bigwedge_{i=1}^m\bigwedge_{j=i+1}^m h_j'dh_i(dT). \end{aligned} (H1dH1T+dT)=t11m1t22m2tm1,m1i=1mj=i+1mhjdhi(dT).

The exterior product of the elements of H 2 ′ d H 1 T H_2' dH_1 T H2dH1T
and the subdiagonal elements of H 1 ′ d H 1 T + d T H_1' dH_1 T+dT H1dH1T+dT is
∏ i = 1 m t i i n − i ⋀ i = 1 m ⋀ j = i + 1 n h j ′ d h i = ∏ i = 1 m t i i n − i ( H 1 ′ d H 1 ) . (13.5) \begin{aligned} \prod_{i=1}^m t_{ii}^{n-i}\bigwedge_{i=1}^m\bigwedge_{j=i+1}^n h_j'dh_i=\prod_{i=1}^m t_{ii}^{n-i}(H_1'dH_1). \end{aligned}\tag{13.5} i=1mtiinii=1mj=i+1nhjdhi=i=1mtiini(H1dH1).(13.5)

The exterior product of the elements of $ H_1’ dH_1 T+dT$ on and
above the diagonal is
⋀ i ≤ j m + terms involving  d H 1 . \begin{aligned} \bigwedge_{i\le j}^m + \textrm {terms involving }{d}H_1. \end{aligned} ijm+terms involving dH1.
The terms of d H 1 {d}H_1 dH1 do not contribute to the total exterior product.Hence the exterior product of the elements of the right side of (13) is
∏ i = 1 m t i i n − i ⋀ i = 1 m ⋀ j = i + 1 n h j ′ d h i = ∏ i = 1 m t i i n − i ( d T ) ( H 1 ′ d H 1 ) . \begin{aligned} \prod_{i=1}^m t_{ii}^{n-i}\bigwedge_{i=1}^m\bigwedge_{j=i+1}^n h_j'dh_i=\prod_{i=1}^m t_{ii}^{n-i}(dT)(H_1'dH_1). \end{aligned} i=1mtiinii=1mj=i+1nhjdhi=i=1mtiini(dT)(H1dH1).
where ( H 1 ′ d H 1 ) = ⋀ i = 1 m ⋀ j = i + 1 n (H_1'dH_1)=\bigwedge_{i=1}^m\bigwedge_{j=i+1}^n (H1dH1)=i=1mj=i+1n.
My comment: Why not ( H ′ d H 1 ) (H'dH_1) (HdH1) ?
End of proof of (13).

For complex matrix Z Z Z and unitary matrix H 1 : H 2 H_1:H_2 H1:H2, considering the real part and imagine part,
( H 2 H d H 1 T ) = ( det ⁡ T ) 2 n − 2 m ⋀ j = m + 1 n ⋀ i = 1 m h j H d h i . \begin{aligned} (H_2^H dH_1 T)=(\det T)^{2n-2m} \bigwedge_{j=m+1}^n \bigwedge_{i=1}^m h_j^Hdh_i. \end{aligned} (H2HdH1T)=(detT)2n2mj=m+1ni=1mhjHdhi.

Now consider the upper matrix H 1 H d H 1 T + d T H_1^H dH_1 T+dT H1HdH1T+dT. First note that since H 1 H H 1 = I m H_1^H H_1=I_m H1HH1=Im, we have
H 1 H d H 1 + d H 1 H . H 1 = 0 \begin{aligned} H_1^H dH_1+dH_1^H.H_1=0 \end{aligned} H1HdH1+dH1H.H1=0
so that
H 1 H d H 1 = − d H 1 H . H 1 = − ( H 1 H d H 1 ) H , \begin{aligned} H_1^H dH_1=-dH_1^H.H_1=-(H_1^H dH_1)^H, \end{aligned} H1HdH1=dH1H.H1=(H1HdH1)H,
and hence H 1 H d H 1 H_1^H dH_1 H1HdH1, is skew-symmetric:
H 1 H d H 1 = [ h 1 H d h 1 − h 2 H d h 1 ⋯ − h m H d h 1 h 2 H d h 1 h 2 H d h 2 ⋯ − h m H d h 2 h 3 H d h 1 h 3 H d h 2 ⋯ − h m H d h 3 ⋮ ⋮ ⋮ h m H d h 1 h m H d h 2 h m H d h m ] \begin{aligned} H_1^H dH_1=\begin{bmatrix} h_1^Hdh_1 & -h_2^Hdh_1 & \cdots & -h_m^Hdh_1\\ h_2^Hdh_1 & h_2^Hdh_2 & \cdots & -h_m^Hdh_2\\ h_3^Hdh_1 & h_3^Hdh_2 & \cdots & -h_m^Hdh_3\\ \vdots & \vdots & &\vdots\\ h_m^Hdh_1 & h_m^Hdh_2 & &h_m^Hdh_m \end{bmatrix} \end{aligned} H1HdH1=h1Hdh1h2Hdh1h3Hdh1hmHdh1h2Hdh1h2Hdh2h3Hdh2hmHdh2hmHdh1hmHdh2hmHdh3hmHdhm
where H i H d H i , ( i = 1 , 2 , . . . , m ) H_i^H dH_i, (i=1,2,...,m) HiHdHi,(i=1,2,...,m) are with imagine parts only.

Postmultiplying this by the upper-triangular matrix T gives the following matrix, where only the subdiagonal elements (and on the diaonal for complex matrix form)are given, and where, in addition, terms of the form h i H d h j h_i^Hdh_j hiHdhj are ignored if they have appeared already in a previous column:
H 1 H d H 1 T = [ h 1 H d h 1 t 11 ∗ ⋯ ∗ h 2 H d h 1 t 11 h 2 H d h 2 t 22 + ∗ ⋯ ∗ h 3 H d h 1 t 11 h 3 H d h 2 t 22 + ∗ ⋯ ∗ ⋮ ⋮ ⋮ ⋮ h m H d h 1 t 11 h m H d h 2 t 22 + ∗ ⋯ h m H d h m t m m + ∗ ] \begin{aligned} H_1^H dH_1T=\begin{bmatrix} h_1^Hdh_1t_{11} & * & \cdots & *\\ h_2^Hdh_1t_{11} & h_2^Hdh_2t_{22}+* & \cdots & *\\ h_3^Hdh_1t_{11} & h_3^Hdh_2t_{22}+* & \cdots & *\\ \vdots & \vdots &\vdots&\vdots\\ h_m^Hdh_1t_{11} & h_m^Hdh_2t_{22}+* & \cdots & h_m^Hdh_mt_{mm}+* \end{bmatrix} \end{aligned} H1HdH1T=h1Hdh1t11h2Hdh1t11h3Hdh1t11hmHdh1t11h2Hdh2t22+h3Hdh2t22+hmHdh2t22+hmHdhmtmm+

Column by column, the exterior product of the subdiagonal elements (under the diagonal)of H 1 ′ d H 1 T + d T H_1' dH_1 T+dT H1dH1T+dT is (remember that d T dT dT is upper-triangular)

t 11 2 ( m − 1 ) + 1 t 22 2 ( m − 2 ) + 1 ⋯ t m , m ⋀ i = 1 m ⋀ j = i + 1 m h j ′ d h i . \begin{aligned} t_{11}^{2(m-1)+1}t_{22}^{2(m-2)+1}\cdots t_{m,m}\bigwedge_{i=1}^m\bigwedge_{j=i+1}^m h_j'dh_i. \end{aligned} t112(m1)+1t222(m2)+1tm,mi=1mj=i+1mhjdhi.
Each element under diagonal contribute 2 t i i t_{ii} tii, and the element on diagonal contribute 1 t i i t_{ii} tii.
( H 1 H d H 1 T + d T ) = t 11 2 m − 1 t 22 2 m − 3 ⋯ t m , m ⋀ i = 1 m ⋀ j = i m h j H d h i ( d T ) . \begin{aligned} (H_1^H dH_1T+dT)=t_{11}^{2m-1}t_{22}^{2m-3}\cdots t_{m,m}\bigwedge_{i=1}^m\bigwedge_{j=i}^m h_j^Hdh_i(dT). \end{aligned} (H1HdH1T+dT)=t112m1t222m3tm,mi=1mj=imhjHdhi(dT).

The exterior product of the elements of H 2 H d H 1 T H_2^H dH_1 T H2HdH1T
and the subdiagonal elements (and imagine part on diagonal , considering d t i i dt_{ii} dtii are real) of H 1 H d H 1 T + d T H_1^H dH_1 T+dT H1HdH1T+dT is
∏ i = 1 m t i i n − i ⋀ i = 1 m ⋀ j = i n h j H d h i = ∏ i = 1 m t i i n − i ( H 1 H d H 1 ) . \begin{aligned} \prod_{i=1}^m t_{ii}^{n-i}\bigwedge_{i=1}^m\bigwedge_{j=i}^n h_j^Hdh_i=\prod_{i=1}^m t_{ii}^{n-i}(H_1^HdH_1). \end{aligned} i=1mtiinii=1mj=inhjHdhi=i=1mtiini(H1HdH1).
Here ( H 1 H d H 1 ) = ⋀ i = 1 m ⋀ j = i n h j H d h i (H_1^HdH_1)=\bigwedge_{i=1}^m\bigwedge_{j=i}^n h_j^Hdh_i (H1HdH1)=i=1mj=inhjHdhi.

The exterior product of the elements of H 1 ′ d H 1 T + d T H_1' dH_1 T+dT H1dH1T+dT on diagnal (real part) and above the diagonal is
⋀ i ≤ j m + terms involving  d H 1 . \begin{aligned} \bigwedge_{i\le j}^m + \textrm {terms involving }{d}H_1. \end{aligned} ijm+terms involving dH1.
The terms of d H 1 {d}H_1 dH1 do not contribute to the total exterior product.Hence the exterior product of the elements of the right side is
∏ i = 1 m t i i 2 n − 2 i + 1 ⋀ i = 1 m ⋀ j = i n h j H d h i = ∏ i = 1 m t i i 2 n − 2 i + 1 ( d T ) ( H 1 H d H 1 ) . \begin{aligned} \prod_{i=1}^m t_{ii}^{2n-2i+1}\bigwedge_{i=1}^m\bigwedge_{j=i}^n h_j^Hdh_i=\prod_{i=1}^m t_{ii}^{2n-2i+1}(dT)(H_1^HdH_1). \end{aligned} i=1mtii2n2i+1i=1mj=inhjHdhi=i=1mtii2n2i+1(dT)(H1HdH1).

  1. Aspect of Multivariate Statistics Theory

  2. Eigenvalues and Condition Number of Random Matrics

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值