分子生成
文章平均质量分 96
AIDrug 测测深不可测
这个作者很懒,什么都没留下…
展开
-
几何完备的3D分子生成/优化扩散模型 GCDM-SBDD - 评测
GCDM 来源于美国密苏里大学电气工程与计算机科学系的研究助理 Alex Morehead 为通讯作者的文章:《Geometry-complete diffusion for 3D molecule generation and optimization》。该文章于 2024 年 7 月 3 日发表在 《 communications chemistry 》上。近来,扩散模型和等变图神经网络(GNNs)经常被用于生成三维分子。原创 2024-10-13 10:05:24 · 1231 阅读 · 0 评论 -
相互作用的检索增强 3D 分子生成扩散模型 - IRDiff 评测
IRDiff 是一个全新的基于蛋白质-配体相互作用的检索增强 3D 分子扩散模型,可以生成目标感知的分子。IRDiff 利用一组设计好的参考配体分子来引导扩散模型生成满足目标特性的分子。本文对 IRDiff 进行了评测,修正了GitHub上的代码错误,使用内置案例和自有案例对 IRDidd 进行分子生成测试,并检查生成结果。原创 2024-10-01 09:51:47 · 915 阅读 · 0 评论 -
分子属性梯度引导的3D分子生成扩散模型 TAGMOL - 评测
TAGMoL 是一个基于分子属性条件引导扩散的3D分子生成模型,适合在给定靶标蛋白质的情况下,可以生成一系列满足目标特性(分子属性,binding affinity)的候选分子。。原创 2024-08-25 13:21:20 · 1213 阅读 · 0 评论 -
评估生成分子/对接分子的物理合理性工具 PoseBusters 评测
PoseBusters 是一个基于 RDKit 的 Python 包,通过一系列标准检查配体对接姿势的化学有效性和物理合理性。来源于牛津大学统计学系 Martin Buttenschoen、Garrett M. Morris 和 Charlotte M. Deane 合作的文章:《PoseBusters: AI-based docking methods fail to generate physically valid poses or generalise to novel sequences》。。原创 2024-08-04 22:03:57 · 1166 阅读 · 0 评论 -
SQUID - 形状条件下的基于分子片段的3D分子生成等变模型 评测
基于形状的虚拟筛选在基于配体的药物设计中至关重要,主要目的是识别与已知配体具有相似 3D 形状的分子。传统方法(例如:openeye 的 ROCS)依赖于枚举的化学库,这限制了新化学空间的探索。为此,作者开发了SQUID模型。SQUID 是在 形状条件下 3D 分子生成模型,可以用于在形状条件下的化学空间探索任务。原创 2024-07-21 15:05:42 · 1302 阅读 · 0 评论 -
药物设计中的SE3等变图神经网络层- EGNN 代码解析
此部分内容介绍了常用在药物设计深度学习中的SE3等变网络层 EGNN。主要对EGNN的代码逻辑、模块进行解析,并介绍其中的SE3等变在模型中的原理。原创 2024-06-04 23:43:49 · 1617 阅读 · 0 评论 -
3D分子生成的定制扩散框架 MolDiff - 评测
作者提出了对原子和分子键同时进行概率采样的扩散模型MolDiff。MolDiff基于SE3等变神经网络,同时进行原子和化学键的消息传递。原创 2024-05-12 16:47:20 · 1821 阅读 · 8 评论 -
PMDM-针对特定口袋的分子扩散生成模型 评测
PMDM 模型是腾讯AI Lab近期发表在Nature Communication上的分子生成文章。PMDM通过二元等变扩散网络,利用全局和局部分子动力学信息,将目标口袋的 3D 结构感知为条件信息,并结合分子和蛋白质之间的相互作用,学习分子概率。PMDM可以生成结构有效且构效合理的,契合口袋的3D分子。本文以自己的3WZE体系为例子,使用作者开源的代码和checkpoint,对PMDM莫进行测评原创 2024-04-13 21:04:14 · 1969 阅读 · 8 评论 -
口袋条件下的Lead优化几何深度模型-Delete 评测
Delete 模型是浙江大学侯廷军老师发表2023年8月4日在arXiv上的文章,文章名:Delete: Deep Lead Optimization Enveloped in Protein Pocket。Delete 模型基于mask策略,按照作者的描述,首先是随机掩码预训练模型,然后是应用于骨架跃迁、linker设计,片段延伸、侧链修饰的四个微调模型。通过,vina energy等分析,发现 Delete 模型生成的分子可能具有更好的活性。原创 2024-03-24 20:37:56 · 1481 阅读 · 2 评论 -
基于片段的3D分子生成扩散模型 - AutoFragDiff 评测
本文是AutoFragDiff模型的测评文章。传统的,基于口袋的3D分子生成网络的常用方法是自回归模式,模型放置原子和原子键是迭代的,逐个进行。但是这种方式会导致误差的积累,同时生成速度较慢,生成苯环分子也需要6个步骤。而使用基于分子片段的自回归方法可以避免这个问题。作者使用使用几何矢量感知器和自回归扩散模型 Autoregressive Diffusion Models (ARDMs),以自回归的模式,分子骨架和蛋白质口袋为条件下,逐个预测新分子片段的原子类型和空间坐标。原创 2024-02-10 08:57:05 · 1760 阅读 · 0 评论 -
知识引导的分子生成扩散模型 - KGDiff 评测
KGDiff模型是一个基于口袋的知识引导的3D分子生成的扩散模型。基于口袋的分子生成模型之前有介绍过targetdiff,FLAG等。其中,KGDiff与TargetDiff类似,KGDiff模型也是一个扩散模型,应针对的是口袋条件下的3D分子生成。KGDiff的创新点在于:KGDiff模型利用领域知识,例如,vina score,指引分子生成过程中的去噪过程,可生成高结合力的分子。此外,KGDiff还是一个原子层级可解释性的模型,在生成分子时,同时给出生成分子预测score,原子层面的score。原创 2024-01-11 21:06:13 · 1944 阅读 · 0 评论