Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression (论文阅读笔记)

在这里插入图片描述

摘要

Bounding box(bbox)回归是CV中的一项基本任务,最常用的损失函数是IOU Loss 和相关变体。文章将现有的基于IoU Loss推广到一个新的Power IoU系列 Loss,它具有一个幂次IoU项和一个附加的幂次正则项。这种新的损失系列为α-IoU Loss。
在多个目标检测基准和模型上的实验表明,α- iou损失

  1. 可以显著的超过现有的基于iou的损失;
  2. 通过调节α,使探测器更灵活地实现不同水平的bbox回归精度;
  3. 对小数据集和噪声的鲁棒性更强。

一、介绍

目标检测通常包含分类预测和回归预测(bounding box的预测)。早前的bbox回归采用的是L_n范式,最近的相关工作则直接采用IOU Loss作为定位损失。

IOU Loss损失对bbox scales是不变的,所以能够更好的训练检测器,但是当预测框和真实框没有重叠的时候存在梯度消失的问题,从而导致降低收敛速度和检测精度。所以就有了IOU Loss的相关变体: Generalized IoU (GIoU), Distance-IoU (DIoU) and Complete IoU (CIoU)。

GIoU在IoU loss 中加入了惩罚项来减轻梯度消失的问题,DIoU和CIoU在惩罚条件下考虑了预测框和真实框之间的中心点距离和长宽比。

文章对现有的基于IoU Los采取幂变换提出了一个新的IoU losser family:
在这里插入图片描述
并且通过实验发现,在大多数情况下,取α=3的效果最好。

文章贡献:

  1. 提出了α-IoU ,用于精确的bbox回归和目标检测,是基于IoU的现有损失的统一幂化;
  2. 分析了α-IoU 的一系列性质,包括次序保留、损失/梯度重加权,表明正确选择α(α >1)可以通过自适应地提高high IoU对象的损失和梯度的加权来提高bbox回归精度;
  3. 在多个基准目标检测数据集和模型上,α- iou损失优于现有的基于iou的损失,并为小数据集和噪声提供更强的鲁棒性。

二、相关工作

2.1 目标检测模型

Object Dection Models
	|---anchor-based
		|--- two-stage models
			|---RCNN
			|---HTC
			|---TSD
		|---one-stage models
			|---YOLO series
			|---RetinaNet
			|---SSD
	|---anchor-free
		|--- CornerNet
		|---CenterNet
		|---ExtremeNet
		|---CentripetalNet
		|---FCOS
		|---Transformer		

2.1 Bounding Box回归损失

先前的基于L_n范式的bbox回归损失对于不同规模的bbox是比较敏感的,最近的相关工作是基于IoU loss和相关其变体,因为IoU是定位度量,所以对于bbox的尺度是不改变的。如BIoU、GIoU、DIoU和CIoU。

  • Bounded IoU (BIoU) :损失基于一组IoU上界,使感兴趣区域(RoI)与Ground Truth之间的IoU重叠最大化;
  • GIoU:为了解决非重叠样本上的梯度消失问题而提出的,非重叠样本是指具有非重叠预测Box(IoU为零)的样本;
  • DIoU和CIoU:进一步考虑了IoU中的重叠面积、中心点距离和纵横比以及正则化项。(这些正则化项有助于提高收敛速度和检测性能)
  • 还有一些损失函数是为了更关注High IoU目标而设计的。例如,Rectified IoU (RIoU)损失和Focal and Efficient IoU(Focal- eiou)损失。这些损失函数增加了那些在高回归精度样本的梯度。然而,与其他基于IoU的损失相比,RIoU和Focal-EIoU既不简洁也不具有泛化性。

三、α-IoU Losses for Bounding Box Regression

3.1 α-IoU Losses

在这里插入图片描述

  1. 当α—>0时:

在这里插入图片描述

  1. 当α=1时:
    在这里插入图片描述
  2. 当α=2时:
    在这里插入图片描述
    同时,简化α-IoU 公式为:
    在这里插入图片描述
    在这里,作者对α-/->0更感兴趣,因为目前最先进的基于iou的损失都是α≥1。将α-/->0的α- iou损失扩展为更一般的形式,在公式中引入幂次惩罚项/正则化项:
    在这里插入图片描述

3.2 α-IoU Losses的特性

在这里插入图片描述

Lα-IoU的幂变换保留了L-IoU的关键性质,包括非负性、不可分辨恒等式、对称性和三角不等式。

对于:
img—input—>模型M_i—predict—>B_i
img—input—>模型M_j—predict—>B_j
ground truth: B_gt
若有:IoU(B_i, B_gt)< IoU(B_j, B_gt)

Lα-IoU有如下特性:

1.次序保持
在这里插入图片描述
可知L-IoU和Lα-IoU都是单调递减函数。

2.相对损失权重
在这里插入图片描述
当α >1时,加权因子随IoU的增加而单调增加(从1到α),在0<α <1时,随IoU的增加而单调减少(从1衰减到α)。实验证明了Lα-IoU(α >1)可以帮助模型更专注于High IoU目标,以提高定位和检测的性能。

3.相对梯度权重
在这里插入图片描述
当α>1时,上述reweighting factor 单调地随IoU的增加而增加,而在0<α<1时单调地随IoU的增加而减少。这种相对梯度重新加权方案允许模型根据目标的IoU学习具有自适应速度(即不同梯度)的目标。

理论上,当α=2时加速了在AP50时对所有正向IoU目标的学习。然而,实验表明,在大多数情况下,α =3的α-IoU损失比α=2的α-IoU损失更具竞争力。

性质4
当α>1时,α增加了绝对损失量,这为优化所有层次的目标创造了更多空间。

性质5
α对高IoU目标设置了绝对梯度权值,从而加速对高IoU目标的学习。

Lα-IoU的绝对性质和相对性质都与物体的IoU值相适应,这种重新加权方案将提供更大的灵活性,以实现不同水平的bbox回归精度。

3.3 Learning Dynamics of Lα-IoU

利用lα- iou进行训练是一个动态过程,需要同时基于绝对和相对性质来解释。在α >1中,简单的例子将首先学习,并逐渐提高速度,直到iou = 1,而困难的例子将逐渐学习,并随着其IoU的提高而加速。
在这里插入图片描述
图3表明,提高高IOU对象的损失和梯度的权重可以促进后期的训练。

四、实验

4.1 yolov5s、yolov5x和DETR模型

在这里插入图片描述
首先验证了Lα-IoU损失在VOC和MS COCO数据集上训练基于Anchor和Anchor-Free模型的有效性。同时,对比yolov5s和yolov5x的map值提升,我们可以发现Lα-IoU损失更倾向于轻量化的模型

4.2 Faster R-CNN模型

在这里插入图片描述

4.3 yolov5s模型下增加模拟噪声

在这里插入图片描述
Lα-IoU损失在噪声场景下也优于所有的Baseline,当没有噪声时并不总是这样(对比表1)。此外,Lα-IoU损失在更严重的噪声中更稳健。当噪声率η从0.1增加到0.3时,mAP/mAP75:95从2.97%/10.26%增加到6.39%/24.09%,证实了Lα-IoU损失在噪声场景中的优势。

4.4 α的敏感性

在这里插入图片描述
图6显示了YOLOv5s在PASCAL VOC上的结果,包括各种噪声场景。很明显,Lα- iou损失在所有情况下都表现得很好,其中α = 3在大多数情况下表现最好。

4.5 检测结果对比

在这里插入图片描述

  • 4
    点赞
  • 55
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
Siou Loss是一种用于边界框回归的损失函数,它比传统的平方损失函数更强大。 边界框回归是目标检测任务中的重要组成部分,它的目标是预测图像中物体的位置和大小。传统的平方损失函数在边界框回归中常被使用,但它在处理物体尺寸变化和不均衡数据上存在一些问题。而Siou Loss通过解决这些问题,提供了更强大的学习能力。 Siou Loss通过引入IoUIntersection over Union)来度量预测边界框和真实边界框之间的相似度。IoU是指预测边界框和真实边界框的交集区域与并集区域的比值,它能更好地描述边界框的匹配度。 Siou Loss不仅考虑了预测边界框和真实边界框之间的位置差异,还考虑了它们之间的尺度差异。这使得Siou Loss在处理物体尺寸变化时更加灵活,能够更好地适应不同尺寸的物体。 此外,Siou Loss还能够解决数据不均衡的问题。在目标检测任务中,负样本(非物体区域)通常远远多于正样本(物体区域),这导致传统的平方损失函数在训练过程中很难平衡正负样本之间的关系。而Siou Loss通过IoU作为权重,可以有效地平衡正负样本之间的重要性,提高了模型对于正样本的关注程度。 综上所述,Siou Loss作为一种更为强大的学习方法,在边界框回归任务中具有优势。它通过引入IoU来度量相似度,并解决了尺度变化和数据不均衡的问题,提高了模型的学习能力和预测准确性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值