Jupyter添加、删除对应虚拟环境kernel内核

添加kernel内核

conda添加了相应的虚拟环境之后,多需要运用到Pycharm、Spyder和Jupyter中,前两种笔者已经分享过,今天阐述Jupyter添加和删除虚拟环境生成对应kernel内核,这样新建的ipykernel项目就使用对应的虚拟环境。

1. 创建新的环境(取名为neural_net,选用python3.8版本)

conda create -n neural_net python=3.8

 2. 激活环境

conda activate neural_net

3. 安装ipykernel (第一次导入虚拟环境的要下载),使用清华镜像更快,不然自己挂VPN下载使用语句 pip install ipykernel 速度也可观。(哪个环境要装入jupyter就激活哪个虚拟环境)

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple ipykernel

4. 将虚拟环境neural_net导入jupyter的kernel中(自己设置显示的名字为net-3.8)

python -m ipykernel install --name neural_net --display-name net-3.8

5. 用以下命令查看已经安装好的虚拟环境的kernel(如图可查看kernel已经安装),注意图中的python3为conda的base环境自带。

jupyter kernelspec list

 6. 更新jupyter,新建的neural_net的kernel内核已经显示,名字为net-3.8

 删除kernel内核

有时我们要将多余虚拟环境删除,那么jupyter的kernel也需要删除,不然会一直保留这个选项,对于强迫症来说看着一个无用的的kernel选项着实不舒服。

1. 删除虚拟环境neural_net

conda remove -n neural_net --all

2. 删除kernel内核(注意:上图中的python3 kernel内核是base的内置核,删除不掉,或者说不要将其与虚拟环境创建的kernel混淆)。

jupyter kernelspec remove neural_net

3. 删除完毕上述的kernel后,jupyter中虚拟环境neural_net的 kernel内核选项会消失,界面变得更加清爽。(可以继续用命令:jupyter kernelspec list 查看是否还有neural_net选项,没有就是删除干净了)

### 配置 Jupyter Notebook 使用 Python 虚拟环境 #### 创建并激活虚拟环境 为了使 Jupyter Notebook 使用特定的 Python 虚拟环境,首先需要创建该虚拟环境。可以使用 `virtualenv` 或者 Conda 来创建。 对于基于 `virtualenv` 的情况,在命令行输入以下指令来创建名为 `myenv` 的新虚拟环境[^1]: ```bash python -m venv myenv ``` 接着通过下面这条语句激活这个刚建立好的虚拟环境: ```bash source myenv/bin/activate # Linux or macOS myenv\Scripts\activate.bat # Windows ``` 如果偏好使用 Conda,则可以通过下列方式创建和激活一个叫做 `tf` 的环境[^4]: ```bash conda create --name tf python=3.x conda activate tf ``` #### 安装 IPython Kernel 并关联至 Jupyter 一旦虚拟环境被成功设置好了之后,下一步就是在其中安装必要的组件以便让 Jupyter 认识它。这一步骤涉及到向当前环境中添加一个新的内核定义给 Jupyter Notebook 使用。 当处于目标虚拟环境下时,运行下述命令以安装 `ipykernel` 和注册此环境作为可用选项之一[^2][^3]: ```bash pip install ipykernel python -m ipykernel install --user --name=myenv --display-name "Python (myenv)" ``` 这里 `-n, --name` 参数指定了内部使用的名称;而 `--display-name` 设置的是显示在界面上的名字。 #### 更新或重新启动 Jupyter Notebook 完成上述操作后,可能还需要重启正在运行中的任何 Jupyter 实例才能看到新的 kernel 出现在菜单里。另外也可以尝试更新 `nb_conda_kernels` 插件使得无需手动刷新就能自动检测新增加的 kernels: ```bash conda install nb_conda_kernels ``` 此时再次开启 Jupyter Notebook 应用程序,应该可以在新建文档页面找到对应于之前所设虚拟环境的新项 “Python (myenv)” 可供选择。 #### 移除不再需要的虚拟环境及其对应Kernel 如果有不再使用的旧版本或其他多余的 virtual environments 希望清理掉的话,除了常规移除文件夹外,还应记得卸载相应的 Jupyter 内核规格化描述文件[^5]: ```bash jupyter kernelspec list # 查看已有的kernelspecs列表 jupyter kernelspec uninstall <kernel_name> ```
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值