opencv高斯滤波GaussianBlur()详解(sigma取值)

滤波(blur)操作是一种基于邻域的图像平滑方法。
当图像噪声只是图像的一小部分时,用某一像素点的邻域进行变换得到的新的像素点可以减小噪声的影响,从而很好的平滑噪声。
均值滤波是对中心点的邻域求算术平均和,中值滤波是对中心点的邻域求中值。
本文主要说的高斯滤波,高斯滤波可以看作对均值滤波的改进,
以33的邻域为例,均值滤波是对这九个数求平均,而高斯滤波是对这个九个数求加权平均,其中心思想是邻域中每个点离中心点的距离不一样,不应该像均值滤波一样每个点的权重一样,而是离中心点越近,权值越大。而每个点的权重就是高斯分布(也就是正态分布)。
正态分布如下:
f ( x ) = 1 2 π σ exp ⁡ ( − ( x − μ ) 2 2 σ 2 ) f(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) f(x)=2π σ1exp(2σ2(xμ)2)
其中u为均值, σ \sigma σ为方差
x看作像素点距离中心点的距离,则 μ \mu μ取0,
f ( x ) = 1 2 π σ exp ⁡ ( − ( x ) 2 2 σ 2 ) f(x)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{(x)^{2}}{2 \sigma^{2}}\right) f(x

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值