鲁棒性问题——醍醐灌顶之作

本文探讨了对抗性样本的本质,指出它们源于数据集的属性而非网络架构问题。Adi Shamir的理论揭示,对抗性样本是由于图像流形和高维空间的不匹配造成的。通过对抗性训练,可以增强网络的鲁棒性,即使在面对对抗性样本时也能保持稳定性能。
摘要由CSDN通过智能技术生成

Adversarial Examples Are Not Bugs, They Are Features

核心观点:
1、对抗性样本的存在不是网络架构的问题,而是数据集的一个属性
2、分类相关性特征分鲁棒特征和非鲁棒特征 训练都有想当的精度
3、只有鲁棒特征,稳定性高,也就是不怕对抗样本,但精度会有所下降
4、鲁棒特征+非鲁棒特征会辅助提高模型精度,但非鲁棒特征会不稳定

图灵奖得主 Adi Shamir最新理论,揭秘对抗性样本奥秘 | 智源大会特邀报告回顾|流形|神经网络|数据点_网易订阅

       假设神经网络的输入是 n 维空间内的向量,向量每一个维度分别代表特定的语义,其值处于 0-1 之间。然而,所有的自然图像都位于嵌入在大的 n 维空间的低维流形上。这样的流形是十分光滑的,图像之间存在边界,局部流行之间的分布可能是非均匀的。流形对图像嵌入到整个输入空间中的方式给出了一些约束。相较于原始输入向量,自然图像可以以极小的质量损失被压缩到非常小的尺寸。

       在缺乏对低维流形先验知识的情况下,深度神经网络试图在 n 维空间中生成(n-1)维的决策边界,从而将空间分成两个部分。决策边界不必一定连接在一起,可以分成若干段,决策边界的质量仅仅由其在 k 维图像流形上的性能决定(k 远小于 n)【理解:针对目标图像的维度,虽然图像是n维,但实际上数据信息分布仅有k维,就像平面虽然在3维中,但实际信息仅2维】

       决策边界只需要在空间中的很小一部分上具有非常好的性能即可,在其它部分网络可以选择位于任意位置的决策边界,此时网络不必添加额外的惩罚。此外,网络还可以利用额外的 n-k 个维度,从而使其在流形上的性能更好。

      Adi Shamir 认为,正是由于较小的 k 维图像流形和较大的 n 维空间之间的错误匹配导致了对抗性样本的产生。

        假设分别有一张猫的图像和一张牛油果酱的图像,它们处于绿色的一维流形上。神经网络选择了流形上大致位于两张图片正中间的点将两类区分开,该点左侧的点被分为猫,该点右侧的点被分为牛油果酱

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值