火箭弹发射系统多刚体系统动力学分析

1 绪论

1.1 火箭弹研究背景

多管火箭炮自20世纪40年代初首次应用于战争便叱咤风云,在二战中成为主要的火力突击力量。在斯大林格勒保卫战中,“喀秋莎”为苏联最终赢得战争的胜利发挥了举足轻重的作用,引起当时各国的重视。随后,英、美等国相继研制了自己的火箭炮。冷战时期,以美国为首的北约和以苏联为首的华约两大阵营长期对峙,推动导弹、核武器等战略武器快速发展。作为常规武器的火箭炮,这一时期在武器家族中的地位一度动摇。

1991年,苏联解体,两个超级大国间对抗的局面被打破,世界格局朝着多极化方向发展。然而,世界并没有因冷战结束而变得和平,局部战争此起彼伏,其中不乏唯一超级大国也是核武器强国一美国的参与,人们逐渐意识到极具破坏性的核战争没有打起来。纵观冷战后各次战争的特点,常规武器的地位再度受到了各国重视。根据对现代战争特点的深入认识,战争理论研究与计算机模拟分析均证明,在现代化战争中,炮兵部队的巨大威力不是体现在对目标进行精确瞄准并逐发射击,而是在规定的时间内向敌方阵地发射足够数量的炮弹,保证一定的火力密度,从而令敌方人员及装备来不及躲避也无处躲避。现代战争中,高科技侦察装备不断涌现,侦查手段越来越丰富,侦察装备性能也在不断提高,火炮武器在射击后很难躲避敌方的侦查。在这种情况下,武器系统必须具有较好的机动性,才能在射击后迅速撤离或转移阵地,提高战场生存能力,否则很容易遭到敌方的火力反击。

基于上述背景,多管火箭炮凭借其结构简单、机动灵活、成本低廉,火力猛等优点受到了广泛重视,目前,无论是发达国家还是发展中国家都在积极研发性能更加先进的火箭炮。

多管火箭炮的发展趋势主要体现在以下几方面:增大射程、提高战斗部毁伤性能、提高射击准确度和密集度、提高射击准备和发射程序自动化水平、改进射击保障和火控系统。就提高射击准确度和密集度而言,伴随多管火箭炮射程的不断增大,该问题日益突出。在准确度和密集度没有提高的条件下,火箭炮的射程越大,火箭弹偏离目标的偏差就越大。在这种情形下,迫切需要对空气动力学、弹道学、发射动力学,以及可以改进多管火箭炮射击修正和控制的新的工程方法进行更深层次的研究。

1.2 多体动力学研究现状

多体系统动力学的核心问题是建模和求解问题,其系统研究开始于20世纪60 年代。从60年代到80年代,侧重于多刚体系统的研究,主要是研究多刚体系统的自动建模和数值求解;到了80年代中期,多刚体系统动力学的研究已经取得一系列成果,尤其是建模理论趋于成熟,但更稳定、更有效的数值求解方法仍然是研究的热点;80 年代之后,多体系统动力学的研究更偏重于多柔体系统动力学,这个领域也正式被称为计算多体系统动力学,它至今仍然是力学研究中最有活力的分支之一,但已经远远地超过一般力学的涵义近年来,多动力学在汽车技术领域的应用不断增多。汽车本身是一个复杂的多体系统。外界载荷的作用更加复杂,加上人-车-环境的相互作用,给汽车系统动力学的研究带来了很大困难。由于理论方法和计算手段的限制,该学科曾一度发展较为缓慢。汽车系统动力学发展的主要障碍在于无法有效地解决复杂的受力条件下多自由度分析模型的建立和求解问题。

多体系统动力学的出现为解决上述问题提供了有效的途径。经过30 多年的努力,现在有许多大型通用多体动力学软件可以对汽车进行分析和计算。在各大汽车厂家及研究机构中,多体软件的使用呈直线上升趋势。其中,美国MDI(Mechanical Dynamics Inc.)公司(现已经并入美国MSC公司)开发的机械系统动力学仿真分析软件 Adams (Automatic Dynamic Analysis of Mechanical System),目前在全球市场占有率最高。该软件在汽车技术领域的应用比例为43%。目前,多体系统动力学分析软件已成为工业发达国家汽车界CAE(计算机辅助工程)系统中不可缺少的组成部分。在汽车设计开发中发挥了重要的作用。多体系统动力学软件分析的范围包括:运动分析、静态分析、准静态(瞬时动态)分析、动力学分析等。一些软件还可以与有限元分析、模态分析、优化分析等模块化程序进行相互调用,完成对整车及各零部件的性能分析和结构设计。

上世纪80年代后期,多体系统动力学的理论和方法逐渐在汽车领域得到了应用。这标志着汽车多体系统动力学向新的层次发展,其中许多有益的工作值得借鉴。例如,把车身处理为柔性体,离散化过程采用集中质量法,并考虑转动惯量的影响,将计算结果同有限元分析的方法进行比较;采用子结构的分析技术,车身为主结构,悬架系统处理为子结构。采用模态综合技术用自由度较少的模态坐标描述车身变形。悬架子结构用物理坐标表示,通过约束条件把整个系统组装起来联合求解。

在应用多体系统动力学在汽车技术研究时,首先要根据实际结构和所研究的问题,对实际系统进行合理的简化,以免增加不必要的复杂性。系统中柔性体的数量及其变形描述方式的数学模型的选择,将极大地影响建模和求解的难易程度,尤其是采用空间模型或用有限元方法的情况下,描述变形的弹性坐标数目的增加远远超过参照系坐标的数目增加。解决的办法可采用模态综合技术来缩减弹性坐标数目。对汽车而言,处理好整车与各局部总成的关系问题十分重要。例如,汽车的悬架形式较多,又是空间较复杂的多体系统,在分析时应先将其作为一个子系统进行较细致的分析。整车分析可采用更加通用的模型,两者之间靠约束条件建立联系,而此约束条件往往可进行某种程度的简化。

目前,多体系统动力学方程的推导一般采用拉格朗日、牛顿-欧拉或appell方程。在 appell方程中引入了加速度函数,使其方程的形式非常简单。虽然其求加速度函数的过程比拉格朗日方程中求动能的过程复杂得多,但对解非完整约束问题是很有效的,所以可用该方程解汽车轮胎与地面的非完整约束问题。柔体与刚体的最大区别是参照系的选择不同,柔体应用所谓浮动参照系。在描述浮动参照系的运动时可采用惯性坐标或相对坐标。采用相对坐标或混合坐标更方便,更适用于汽车专用程序的编制。对于多体系统动力学问题的刚性方程的求解,重点是数值计算的稳定性问题。

1.3 多刚体系统动力学国际会议

1977年国际理论和应用力学学会(International Union of Theoretical and Applied Mechanics - IUTAM)发起在德国慕尼黑由Magnus主持召开第一次多刚体系统动力学讨论会。

1983年北大西洋公约组织与美国国家科学基金委等(NATO-NSF-ARD)联合组织在美国爱阿华由Haug主持召开“机械系统动力学计算机辅助分析与优化高级研讨会”。

1985年第八届国际车辆动力学协会( International Association of Vehicle System Dynamics - IAVSD)会议,Kortum和Schiehlen发表了用于车辆动力学仿真的多体软件。

1985年IUTAM 与国际机器及机构理论联合会(IFTOMM)联合在意大利Udine由Bianchi和 Schiehlen主持举行了第二届国际多体系统动力学讨论会,这次会议总结了该领域的进展,标志多刚体系统动力学已趋于成熟。

1989年由德国斯图加特大学主持对当时比较先进的大型软件进行测试,编辑出版了“多体系统手册”;以后几乎每年都有国际的多体系统动力学的会议,并出现了多体系统动力学的专门的刊物。

2012年8月26日至30日,为期5天的第六届亚洲多体动力学会议(The 6th Asian Conference on Multibody Dynamics, ACMD2012)在上海交通大学徐汇校区举行。与会各国代表围绕多体动力学的多个领域汇报了最新的研究成果,进行了充分的交流和研讨。会议期间,ACMD国际指导委员会召开了工作会议,讨论了ACMD会议的未来发展事宜。

2018年9月25日至29日,国际多体动力学学术研讨会(International Symposium on Multibody Dynamics in Aerospace and Robotics Engineering)在北京大学中关新园举行。本次研讨会围绕多体动力学、非线性动力学以及工程技术中关键动力学问题进行了深入的研讨与交流。

2023年航空航天,动力学与机械制造国际会议(ICADMM 2023)将于2023年8月4日于中国昆明召开。会议将围绕“航天航空科学”、“空气动力学”、“机械制造”等主题展开讨论,旨在为从事航天航空科研等相关主题的科研学者、技术人员及相关人员提供一个共享科研成果和前沿技术,了解学术发展趋势,拓宽研究思路,加强学术研究和探讨,促进学术成果产业化合作的平台。

2 R/W方法基本原理

R/W方法:主要特点是利用图论的概念及数学工具描述多刚体系统的结构,以邻接刚体之间的相对位移作为广义坐标,导出适合于任意多刚体系统的普遍形式动力学方程。R/W方法以十分优美的风格处理了树结构多刚体系统。

2.1 系统的描述

对于由n个刚体组成的多刚体系统,引入图论中顶点和弧的概念,分别用B_{i}表示顶点(刚体),用o_{j}表示孤(饺链)。在规则标号下,系统的拓扑结构可由全关联矩阵来描述。此矩阵元素S_{ij}定义为:

为应用方便,常将上述矩阵的首行与其余部分分开、记作 S_{0},其余部分为n×n阶满秩矩阵,记作S,称为系统关联矩阵。

对于树形系统,还可定义系统的通路矩阵T来描述系统内各刚体与参考体B_{0}之间的通路状况,其元素T_{ji}定义为:

2.2 系统的运动学关系 

B_{0}

 

 由此、建立系统的移动轴矢量矩阵k和转动轴矢量矩阵p以及广义坐标列阵q为:

则系统的相对速度及相对角速度矢量列阵为:

可得:

利用体饺矢量矩阵c和通路矢量矩阵d表示较链在每个刚体上的分布状况。其元素分别为:

 则刚体的绝对运动参量可写成如下形式:

由(2.9)式可以得到:

2.3系统动力学方程

对由n个刚体组成的多刚体系统、其Jourdain形式的动力学普遍方程为:

3 火箭弹发射系统分析

3.1 系统结构拓扑图建立

由于火箭发射系统中各部分本身的刚度远大于它们之间的联结刚度。因此,将火箭发射系统简化为车体、回转体、俯仰体和火箭弹4个刚体、车体与地面、回转体与车体、俯仰体与回转体之间以弹性阻尼元件相连接。以系统静止时车体质心位置为原点建立参考坐标系,以钦链点为原点建立各刚体连体坐标系,坐标轴与各体的惯性主轴平行,则车体相对于地面运动的广义坐标与表示为:

回转体相对于车体运动的广义坐标:

俯仰体相对于回转体转动的广义坐标:

火箭弹相对俯仰体上的定向器作6自由度空间运动,其较链点取在后定心部中心,广义坐标为:

关联矩阵 

通路矩阵T :

内关联矩阵:

系统的加权体铰矢量矩阵 

系统的通路矩阵 

系统的广义坐标矩阵 

3.2 运动学分析

火箭弹发射系统是一个既有移动铰,又有转动铰的树形系统,相比于单一的移动铰和转动铰系统,其运动学分析较为复杂。根据2.2节定义的量,进行系统的运动分析:

(1)刚体的速度

对于刚体上任意的移动矢量

刚体的速度:

刚体的相对移动速度:

(3.7)式的矩阵形式为:

 

(2)刚体的加速度

在速度的基础上,求时间的绝对导数得到刚体的加速度:

通过比较相同的量在不同的表达式的方程,我们可以得到刚体的相对加速度:

同理,可以把(3.10)式写成矩阵的形式:

3.3 动力学分析

    在实际工程结构的设计工作中,动力学设计和分析是必不可少的一部分。通常动力分析的工作主要有系统的动力特性分析(即求解结构的固有频率和振型),和系统在受到一定载荷时的动力响应分析两部分构成。根据系统的特性可分为线性动力分析和非线性动力分析两类。为了确定火箭弹的发射精度等内容,需要对系统普遍方程进行确定:

(1)系统动力学普遍方程

火箭弹发射系统为有跟树形系统,考虑到刚体间力元的作用,加上2.3节的原理,我们可以得到系统的动力学普遍方程:

(2)广义坐标形式的动力学普遍方程

直接用质点系的广义坐标的变分来表示各质点的虚位移,对完整约束系统来说,可推得与系统自由度相同的一组独立的运动微分方程。将动力学普遍方程中各个量用广义坐标的形式表示,然后带入方程,可以得到:

其中 A矩阵与上面介绍的R/W发原理一样,B列阵有所区别:

4 求解一般过程

对于多刚体系统动力学问题一般借助ADAMSHE和DADS为代表的工程软件进行求解。计算多体系统动力学分析的整个流程,主要包括建模和求解两个阶段。建模分为物理建模和数学建模,物理建模是指由几何模型建立物理模型,数学建模是指从物理模型生成数学模型。几何模型可以由动力学分析系统几何造型模块所建造,或者从通用几何造型软件导入。对几何模型施加运动学约束、驱动约束、力元和外力或外力矩等物理模型要素,形成表达系统力学特性的物理模型。物理建模过程中,有时候需要根据运动学约束和初始位置条件对几何模型进行装配。由物理模型,采用笛卡尔坐标或拉格朗日坐标建模方法,应用自动建模技术,组装系统运动方程中的各系数矩阵,得到系统数学模型。对系统数学模型,根据情况应用求解器中的运动学、动力学、静平衡或逆向动力学分析算法,迭代求解,得到所需的分析结果。联系设计目标,对求解结果再进行分析,从而反馈到物理建模过程,或者几何模型的选择,如此反复,直到得到最优的设计结果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值