分类4:机器学习处理乳腺癌数据集代码

该文介绍了对乳腺癌数据进行的分析流程,包括数据导入、探索、预处理、模型训练和超参数调优。使用了如PCA、KNN、SVM、决策树和随机森林等模型,并通过GridSearchCV进行SVM的超参数优化,最终得出最佳模型的性能。
摘要由CSDN通过智能技术生成

1 介绍

乳腺癌数据属于二分类问题,包含569条样本,31个特征,1个标签维度。
如果有需要,可以联系:https://docs.qq.com/doc/DWEtRempVZ1NSZHdQ

2 导入常用的工具箱

import pandas as pd
import numpy as np
from sklearn.decomposition import PCA
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.preprocessing import LabelEncoder
import seaborn as sns
np.random.seed(123)

3 导入数据集

data = pd.read_csv("data.csv")

4 数据探索

4.1 打印数据信息

print(data.shape)
print(data.head())
print(data.describe())
print(data.info)

在这里插入图片描述

4.2 可视化显示

4.2.1 显示相关系数,并可视化

co = data.corr()
plt.subplots(figsize=(8, 8))
sns.heatmap(co.corr().round(2),annot=True)
plt.show()

在这里插入图片描述

4.2.2 显示每个类别的数量

sns.countplot(data['diagnosis'])
plt.show()

在这里插入图片描述

5 数据预处理

5.1 类别标签编码LabelEncoder

data["diagnosis"] = LabelEncoder().fit_transform(data["diagnosis"])
print(data["diagnosis"].head(5))

5.2 剔除id列drop

data.drop(["id"],axis=1, inplace=True)
print(data.columns)

5.3 查看是否有空值isnull

print(data.isnull().sum())

没有空值,不用对空值进行处理

5.4 划分训练集和测试集 train_test_split

from sklearn.utils import shuffle
data = shuffle(data,random_state=123) #打乱样本
x = data.drop(["diagnosis"], axis=1)
y = data["diagnosis"]
X_train, X_test, y_train, y_test = train_test_split(x, y, train_size=0.7, random_state=123)

数据集整体数量:569
训练集集整体数量:398
测试集整体数量:171

5.5 数据归一化MinMaxScaler

scaler = MinMaxScaler()
scaler.fit(X_train)
X_train = scaler.transform(X_train)
X_test = scaler.transform(X_test)

6 使用多个模型训练和预测

model_list = [KNeighborsClassifier(),SVC(),DecisionTreeClassifier(),RandomForestClassifier()]
for model in model_list:
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    svm_acc = round(accuracy_score(y_test, y_pred), 2)
    print("{}模型精度:{}".format(model, svm_acc))
KNeighborsClassifier()模型精度:0.96
SVC()模型精度:0.98
DecisionTreeClassifier()模型精度:0.94
RandomForestClassifier()模型精度:0.95

7 超参数调优GridSearchCV

  • SCORERS查找评分指标
  • verbose=3才能显示出每次的迭代过程
  • scoring评分标准不一样,得到的结果就会不一样
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import SCORERS

param_grid = {"C": [0.01, 0.1, 1, 10, 100],
              "gamma": [0.0001, 0.001, 0.01, 0.1, 1, 10, 20]}

grid_search = GridSearchCV(SVC(), param_grid, cv=2, verbose=3, scoring="accuracy")
grid_search.fit(X_train, y_train)
print(grid_search.best_score_)
print(grid_search.best_params_)
print(grid_search.score(X_test, y_test))

最后的结果和在测试集上的得分

{'C': 1, 'gamma': 1}
0.9766081871345029
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王小葱鸭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值