大模型加持下的爬虫技术革新:从BS4到提示工程的飞跃
在爬虫技术的演进历程中,内容解析一直是一个核心环节。传统的爬虫技术,如使用BeautifulSoup(BS4)等工具,需要逐个解析网页内容,通过XPath或CSS选择器等方式定位并提取所需信息。然而,随着人工智能技术的快速发展,特别是大模型的崛起,内容解析的方式正在发生深刻变革。本文将重点探讨大模型加持下的爬虫技术,对比传统方法与新型提示工程在内容解析上的差异,并给出相应的示例代码。
一、传统爬虫内容解析方法:BS4与XPath
在过去,爬虫开发者通常使用BS4等库来解析网页内容。BS4提供了丰富的API,使得开发者能够方便地通过XPath或CSS选择器定位到页面中的特定元素,并提取出所需的信息。例如,要解析一个页面的标题和段落内容,可以使用类似以下的代码:
from bs4 import BeautifulSoup
import requests
# 发送请求获取页面内容
response = requests.get('http://example.com')
soup = BeautifulSoup(response.text, 'html.parser')
# 使用XPath语法解析标题
title = soup.select_one('title').text
# 使用XPath语法解析段落
paragraphs = soup.select('p')
for paragraph in paragraphs:
print(paragraph.text)
这种方法的优点是直观易懂,开发者可以通过阅读HTML结构来编写XPath或CSS选择器。然而,它也存在一些明显的缺点:首先,对于复杂的页面结构,编写准确的选择器可能是一项繁琐且容易出错的任务;其次,当页面结构发生变化时,选择器可能需要重新编写,导致维护成本增加;最后,这种方法无法充分利用网页中的语义信息,对于某些复杂的内容解析任务可能效果不佳。
二、大模型加持下的内容解析:提示工程的崛起
随着大模型技术的发展,内容解析的方式发生了革命性的变化。现在,我们可以将网页的源码直接输入给大模型,并通过提示工程让模型自动抽取标题、正文等信息,同时去除多余的HTML标记。这种方法不仅简化了开发流程,还提高了内容解析的准确性和效率。
以下是一个简单的示例,展示如何使用大模型进行内容解析:
import requests
from transformers import pipeline
# 加载预训练的大模型
model = pipeline("text-extraction", model="your-large-model")
# 发送请求获取页面内容
response = requests.get('http://example.com')
html_content = response.text
# 将页面源码输入给大模型进行内容解析
extracted_info = model("抽取给定内容中的标题和正文:" + html_content)
# 提取标题和正文等信息
title = extracted_info['title']
text = extracted_info['text']
# 打印解析结果
print("Title:", title)
print("Text:", text)
<