大模型赋能:爬虫技术的全新革命

本文探讨了大模型如ChatGLM-3与传统爬虫技术如BS4和XPath在内容解析上的对比,展示了大模型在提高效率和准确性方面的优势,同时也指出了传统方法在处理复杂页面结构和成本上的特点。文章还讨论了爬虫面临的常见问题,如IP封禁、登录验证和反爬虫策略,并给出了相应的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大模型加持下的爬虫技术革新:从BS4到提示工程的飞跃
在爬虫技术的演进历程中,内容解析一直是一个核心环节。传统的爬虫技术,如使用BeautifulSoup(BS4)等工具,需要逐个解析网页内容,通过XPath或CSS选择器等方式定位并提取所需信息。然而,随着人工智能技术的快速发展,特别是大模型的崛起,内容解析的方式正在发生深刻变革。本文将重点探讨大模型加持下的爬虫技术,对比传统方法与新型提示工程在内容解析上的差异,并给出相应的示例代码。

一、传统爬虫内容解析方法:BS4与XPath

在过去,爬虫开发者通常使用BS4等库来解析网页内容。BS4提供了丰富的API,使得开发者能够方便地通过XPath或CSS选择器定位到页面中的特定元素,并提取出所需的信息。例如,要解析一个页面的标题和段落内容,可以使用类似以下的代码:

from bs4 import BeautifulSoup  
import requests  
  
# 发送请求获取页面内容  
response = requests.get('http://example.com')  
soup = BeautifulSoup(response.text, 'html.parser')  
  
# 使用XPath语法解析标题  
title = soup.select_one('title').text  
  
# 使用XPath语法解析段落  
paragraphs = soup.select('p')  
for paragraph in paragraphs:  
    print(paragraph.text)

这种方法的优点是直观易懂,开发者可以通过阅读HTML结构来编写XPath或CSS选择器。然而,它也存在一些明显的缺点:首先,对于复杂的页面结构,编写准确的选择器可能是一项繁琐且容易出错的任务;其次,当页面结构发生变化时,选择器可能需要重新编写,导致维护成本增加;最后,这种方法无法充分利用网页中的语义信息,对于某些复杂的内容解析任务可能效果不佳。

二、大模型加持下的内容解析:提示工程的崛起

随着大模型技术的发展,内容解析的方式发生了革命性的变化。现在,我们可以将网页的源码直接输入给大模型,并通过提示工程让模型自动抽取标题、正文等信息,同时去除多余的HTML标记。这种方法不仅简化了开发流程,还提高了内容解析的准确性和效率。
以下是一个简单的示例,展示如何使用大模型进行内容解析:

import requests  
from transformers import pipeline  
  
# 加载预训练的大模型  
model = pipeline("text-extraction", model="your-large-model")  
  
# 发送请求获取页面内容  
response = requests.get('http://example.com')  
html_content = response.text  
  
# 将页面源码输入给大模型进行内容解析  
extracted_info = model("抽取给定内容中的标题和正文:" + html_content)  
  
# 提取标题和正文等信息  
title = extracted_info['title']  
text = extracted_info['text']  
  
# 打印解析结果  
print("Title:", title)  
print("Text:", text)
<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芝士AI吃鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值