翻译自17年nature文章https://www.nature.com/articles/nature23474/#Sec3
量子机器学习
- 雅各布·比亚蒙特( Jacob Biamonte)
- 彼得Wittek,
- 尼古拉·潘科蒂( Nicola Pancotti)
- 帕特里克·雷本特斯特( Patrick Rebentrost)
- 内森·韦伯&
- 塞思·劳埃德(Seth Lloyd)
性质 体积 549, 页数195 – 202(2017)
-
21k次访问
-
317 引文
-
387 高度
抽象
在计算机功能和算法进步的推动下,机器学习技术已成为查找数据模式的强大工具。量子系统产生的非典型模式被认为无法有效地产生经典系统,因此可以合理地假设量子计算机在机器学习任务上可能会胜过经典计算机。量子机器学习领域探索了如何设计和实现量子软件,该软件可以使机器学习比传统计算机更快。最近的工作产生了量子算法,可以作为机器学习程序的基础,但是硬件和软件方面的挑战仍然很大。
主要
在我们拥有计算机之前很久,人们努力寻找数据模式。托勒密将对恒星运动的观测结果与宇宙的地心模型相匹配,并用复杂的行星轮来解释行星的逆行运动。在16世纪,开普勒分析了哥白尼和布拉赫的数据,揭示了以前隐藏的模式:行星以椭圆形移动,太阳在椭圆的一个焦点处移动。通过对天文学数据进行分析以揭示这种模式,产生了数学技术,例如求解线性方程组的方法(牛顿-高斯),通过梯度下降学习最佳值(牛顿),多项式插值(拉格朗日)和最小二乘拟合(拉普拉斯) 。
二十世纪中叶,数字计算机的建设使数据分析技术得以自动化。在过去的半个世纪中,计算机功能的飞速发展使得线性代数数据分析技术(例如回归分析和主成分分析)得以实现,并导致了更复杂的学习方法(例如支持向量机)。在同一时期,数字计算机的发展和迅速发展催生了新颖的机器学习方法。诸如感知器之类的人工神经网络是在1950年代实现的(参考资料1),只要计算机有能力实现它们。在1960年代至1990年代引入并实施了基于神经网络(例如Hopfield网络和Boltzmann机器)的深度学习和训练方法(例如反向传播)(参考资料2)。在过去的十年中,特别是在过去的五年中,强大的计算机和专用信息处理器相结合,能够实现数十亿权重的深度网络3,并将其应用于非常大的数据集,这表明这种深度学习网络能够识别数据中复杂而微妙的模式。
众所周知,量子力学会在数据中产生非典型模式。诸如深度神经网络之类的经典机器学习方法通常具有以下特征:它们既可以识别数据中的统计模式,又可以产生具有相同统计模式的数据:它们可以识别所产生的模式。这种观察表明了以下希望。如果小型量子信息处理器可以产生传统计算机难以计算的统计模式,那么也许它们也可以识别同样难以识别传统的模式。
这种希望的实现取决于能否找到用于机器学习的有效量子算法。量子算法是一组可以解决问题的指令,例如可以确定在量子计算机上执行的两个图是否同构的问题。量子机器学习软件将量子算法用作较大实现的一部分。通过分析量子算法规定的步骤,可以清楚地看到它们有可能在特定问题上胜过经典算法(即减少所需步骤的数量)。这种潜力被称为量子加速。
量子加速的概念取决于人们是采用正式的计算机科学观点(需要数学证明)还是基于现实的有限尺寸设备可以完成的工作的观点(需要有统计优势的可靠统计证据)问题大小的有限范围。对于量子机器学习,经典算法的最佳性能并不总是已知的。这类似于用于整数分解的Shor多项式时间量子算法的情况:没有发现次指数时间经典算法,但是这种可能性没有得到证明。
确定与量子机器学习和经典机器学习相对的缩放优势的方法将取决于量子计算机的存在,这被称为“基准测试”问题。这样的优势可以包括提高分类精度和对经典不可访问系统进行采样。因此,目前使用复杂性理论中的理想化措施来表征机器学习中的量子加速:查询复杂性和门复杂性(请参见专栏1和专栏1表))。查询复杂度衡量的是经典算法或量子算法对信息源的查询数量。如果解决量子问题所需的查询数量少于经典算法所需的查询数量,则会导致量子加速。为了确定门的复杂性,对获得所需结果所需的基本量子运算(或门)的数量进行计数。
表1给定量子机器学习子例程的加速技术
查询和门的复杂性是理想化的模型,可量化解决问题类别所需的资源。在不知道如何将这种理想化映射到现实的情况下,关于真实场景中必要的资源缩放的说法不多。因此,经典机器学习算法所需的资源大部分是通过数值实验来量化的。量子机器学习算法的资源需求在实践中可能同样难以量化。对它们的实际可行性的分析是本次审查的中心主题。
如将在审查中可以看出,有用于机器量子算法学习其表现出量子加速比4,5,6,7。例如,量子基本线性代数子程序(BLAS)-Fourier变换,找到的特征向量和特征值,在其最知名的经典同行求解线性方程组,显示出指数量子加速比8,9,10。这种量子BLAS(qBLAS)可以转化为量子加速器,用于各种数据分析和机器学习算法,包括线性代数,最小二乘拟合,梯度下降,牛顿法,主成分分析,线性,半定和二次编程,拓扑分析和支持向量机9,11,12,13,14,15,16,17,18,19。与此同时,专用量子信息处理器,如量子退火炉和可编程量子光学阵列被很好地匹配深度学习架构20,21,22。尽管尚不清楚在多大程度上可以实现这种潜力,但仍有理由乐观地认为量子计算机可以识别传统计算机无法识别的数据模式。
我们考虑学习机可以是经典的23,24,25,26,27,28,29,30,31,32或量子8,9,11,13,33,34,35,36。它们分析数据可以是由量子感测或测量装置制造古典或量子状态30,