首先我们打开数据之后先了解一下数据有哪些元素。在这个表中,可以看到,第一列是公司名称,第二列是交易日期,第四列是开盘价,之后分别是是最高价,最低价,收盘价,成交量。(数据获取方式看文章末尾)
![](https://img-
blog.csdn.net/20180731231036387?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0NTRE5fZnpz/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70)
在这个例子中,将会利用python和numpy库进行苹果公司的股票交易数据的分析。
先读入数据文件:
import sys
import numpy as np
#读入文件
c,v = np.loadtxt(R'F:\data.csv',delimiter=',',usecols=(6,7),unpack=True) #利用delimiter=','分割,读取第7(收盘价)、8(成交量)列数据,将收盘价和成交量分别赋值给c和v两个数组
[/code]
然后求一些简单的均价:
```code
#计算成交量加权平均价
vwap = np.average(c,weights=v)
print("成交量加权平均价 = ",vwap)
#成交量加权平均价 = 350.589549353
#算术平均价函数
print("算术平均价 = ",np.mean(c))
#算术平均价 = 351.037666667
#时间加权平均价
t = np.arange(len(c))
print("时间加权平均价 = ",np.average(c,weights=t))
#时间加权平均价 = 352.428321839
[/code]
接着可以求数据的最大最小值和它们的中位数和方差:
```code
#寻找最大值和最小值
h,l = np.loadtxt(R'F:\data.csv',delimiter=',',usecols=(4,5),unpack=True) #第5列数据为最高价,第6列为最低价
print("最高价 = ",np.max(h))
#最高价 = 364.9
print("最低价 = ",np.min(l))
#最低价 = 333.53
print("最高价和最低价的平均值 = ",np.max(h)/2 + np.min(l)/2)
#最高价和最低价的平均值 = 349.215
print("最高价之间的极差",np.ptp(h)) #最高价当中最高值-最低值
#最高价之间的极差 24.86
print(&#