【Python数据分析】苹果公司股票数据分析,数据源免费送

本文介绍如何使用Python对苹果公司的股票数据进行分析。内容包括了解数据元素,如公司名称、交易日期、开盘价、最高价、最低价、收盘价和成交量,并通过numpy库计算股票收益率。
摘要由CSDN通过智能技术生成

首先我们打开数据之后先了解一下数据有哪些元素。在这个表中,可以看到,第一列是公司名称,第二列是交易日期,第四列是开盘价,之后分别是是最高价,最低价,收盘价,成交量。(数据获取方式看文章末尾)

![](https://img-
blog.csdn.net/20180731231036387?watermark/2/text/aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L0NTRE5fZnpz/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70)

在这个例子中,将会利用python和numpy库进行苹果公司的股票交易数据的分析。

先读入数据文件:

    import sys
    import numpy as np
    #读入文件
    c,v = np.loadtxt(R'F:\data.csv',delimiter=',',usecols=(6,7),unpack=True)   #利用delimiter=','分割,读取第7(收盘价)、8(成交量)列数据,将收盘价和成交量分别赋值给c和v两个数组
[/code]

然后求一些简单的均价:

```code
    #计算成交量加权平均价
    vwap = np.average(c,weights=v)
    print("成交量加权平均价 = ",vwap)
    #成交量加权平均价 =  350.589549353
    
    #算术平均价函数
    print("算术平均价 = ",np.mean(c))
    #算术平均价 =  351.037666667
    
    #时间加权平均价
    t = np.arange(len(c))
    print("时间加权平均价 = ",np.average(c,weights=t))
    #时间加权平均价 =  352.428321839
[/code]

接着可以求数据的最大最小值和它们的中位数和方差:

```code
    #寻找最大值和最小值
    h,l = np.loadtxt(R'F:\data.csv',delimiter=',',usecols=(4,5),unpack=True)   #第5列数据为最高价,第6列为最低价
    print("最高价 = ",np.max(h))
    #最高价 =  364.9
    
    print("最低价 = ",np.min(l))
    #最低价 =  333.53
    
    print("最高价和最低价的平均值 = ",np.max(h)/2 + np.min(l)/2)
    #最高价和最低价的平均值 =  349.215
    
    print("最高价之间的极差",np.ptp(h))           #最高价当中最高值-最低值
    #最高价之间的极差 24.86
    
    print(&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值