深度学习中框架中reshape和transpose的区别

本文探讨了深度学习中reshape和transpose的区别,reshape用于改变张量形状但不改变元素顺序,transpose则通过互换坐标轴实现维度转换。在处理遥感影像和模型构建时,正确使用这两个函数至关重要。
摘要由CSDN通过智能技术生成

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


前言

今天在使用注意力机制对张量维度进行变换时,需要交换特征图通道与行列维度。因此使用reshape和transpose两个函数进行变换。
之前使用的深度学习的框架是tensorflow,这周接触到pytorch框架,发现两个框架张量(tensor)波段顺序不一样,tensorflow张量顺序为(b,w,h,c),字母代表的含义依次为batch_size,行,列,通道,而pytorch框架里张量顺序为(b,c,w,h)。而在使用不同库读取遥感影像时也会出现波段顺序不一致的情况,常用的简单tif影像读取库有PIL,scipy,cv2,tifffile,这些库通常用于rgb或tif灰度图像的读取,读取结果为(w,h,c),而对于GeoTIFF影像而言,通常使用GDAL库读取,读取结果为(c,w,h)。
这种情况下需要改变数组维度,两个函数有啥区别呢?


一、reshape与transpose的区别?

通常在需要改变张量形状时,最常用的方法是reshape,但是resize函数只能改变张量形状,即不改变数组元素的排列顺序,而tr

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值