提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
前言
今天在使用注意力机制对张量维度进行变换时,需要交换特征图通道与行列维度。因此使用reshape和transpose两个函数进行变换。
之前使用的深度学习的框架是tensorflow,这周接触到pytorch框架,发现两个框架张量(tensor)波段顺序不一样,tensorflow张量顺序为(b,w,h,c),字母代表的含义依次为batch_size,行,列,通道,而pytorch框架里张量顺序为(b,c,w,h)。而在使用不同库读取遥感影像时也会出现波段顺序不一致的情况,常用的简单tif影像读取库有PIL,scipy,cv2,tifffile,这些库通常用于rgb或tif灰度图像的读取,读取结果为(w,h,c),而对于GeoTIFF影像而言,通常使用GDAL库读取,读取结果为(c,w,h)。
这种情况下需要改变数组维度,两个函数有啥区别呢?
一、reshape与transpose的区别?
通常在需要改变张量形状时,最常用的方法是reshape,但是resize函数只能改变张量形状,即不改变数组元素的排列顺序,而tr