【mmdetection】mmdetection推理时,去掉显示结果框的文字标注以及置信度

路径mmdetection/mmdet/core/visualization/image.py

更改的地方是在imshow_det_bboxes这个函数中

更改后的image.py文件

# Copyright (c) OpenMMLab. All rights reserved.
import matplotlib.pyplot as plt
import mmcv
import numpy as np
import pycocotools.mask as mask_util
from matplotlib.collections import PatchCollection
from matplotlib.patches import Polygon

from ..utils import mask2ndarray
from .palette import get_palette, palette_val

EPS = 1e-2


def color_val_matplotlib(color):
    """Convert various input in BGR order to normalized RGB matplotlib color
    tuples,

    Args:
        color (:obj:`Color`/str/tuple/int/ndarray): Color inputs

    Returns:
        tuple[float]: A tuple of 3 normalized floats indicating RGB channels.
    """
    color = mmcv.color_val(color)
    color = [color / 255 for color in color[::-1]]
    return tuple(color)


def imshow_det_bboxes(img,
                      bboxes,
                      labels,
                      segms=None,
                      class_names=None,
                      score_thr=0,
                      bbox_color='green',
                      text_color='green',
                      mask_color=None,
                      thickness=2,
                      font_size=13,
                      win_name='',
                      show=True,
                      wait_time=0,
                      out_file=None):
    """Draw bboxes and class labels (with scores) on an image.

    Args:
        img (str | ndarray): The image to be displayed.
        bboxes (ndarray): Bounding boxes (with scores), shaped (n, 4) or
            (n, 5).
        labels (ndarray): Labels of bboxes.
        segms (ndarray | None): Masks, shaped (n,h,w) or None.
        class_names (list[str]): Names of each classes.
        score_thr (float): Minimum score of bboxes to be shown. Default: 0.
        bbox_color (list[tuple] | tuple | str | None): Colors of bbox lines.
           If a single color is given, it will be applied to all classes.
           The tuple of color should be in RGB order. Default: 'green'.
        text_color (list[tuple] | tuple | str | None): Colors of texts.
           If a single color is given, it will be applied to all classes.
           The tuple of color should be in RGB order. Default: 'green'.
        mask_color (list[tuple] | tuple | str | None, optional): Colors of
           masks. If a single color is given, it will be applied to all
           classes. The tuple of color should be in RGB order.
           Default: None.
        thickness (int): Thickness of lines. Default: 2.
        font_size (int): Font size of texts. Default: 13.
        show (bool): Whether to show the image. Default: True.
        win_name (str): The window name. Default: ''.
        wait_time (float): Value of waitKey param. Default: 0.
        out_file (str, optional): The filename to write the image.
            Default: None.

    Returns:
        ndarray: The image with bboxes drawn on it.
    """
    assert bboxes.ndim == 2, \
        f' bboxes ndim should be 2, but its ndim is {bboxes.ndim}.'
    assert labels.ndim == 1, \
        f' labels ndim should be 1, but its ndim is {labels.ndim}.'
    assert bboxes.shape[0] == labels.shape[0], \
        'bboxes.shape[0] and labels.shape[0] should have the same length.'
    assert bboxes.shape[1] == 4 or bboxes.shape[1] == 5, \
        f' bboxes.shape[1] should be 4 or 5, but its {bboxes.shape[1]}.'
    img = mmcv.imread(img).astype(np.uint8)

    if score_thr > 0:
        assert bboxes.shape[1] == 5
        scores = bboxes[:, -1]
        inds = scores > score_thr
        bboxes = bboxes[inds, :]
        labels = labels[inds]
        if segms is not None:
            segms = segms[inds, ...]

    max_label = int(max(labels)) if labels.shape[0] > 0 else -1
    bbox_color = palette_val(get_palette(bbox_color, max_label + 1))
    text_color = palette_val(get_palette(text_color, max_label + 1))
    mask_color = get_palette(mask_color, max_label + 1)
    mask_color = np.array(mask_color, dtype=np.uint8)
    img = mmcv.bgr2rgb(img)
    width, height = img.shape[1], img.shape[0]
    img = np.ascontiguousarray(img)
    
    import random
    bbox_color = [[random.randint(0, 255)/255 for _ in range(3)] for _ in range(10)]

    fig = plt.figure(win_name, frameon=False)
    plt.title(win_name)
    canvas = fig.canvas
    dpi = fig.get_dpi()
    # add a small EPS to avoid precision lost due to matplotlib's truncation
    # (https://github.com/matplotlib/matplotlib/issues/15363)
    fig.set_size_inches((width + EPS) / dpi, (height + EPS) / dpi)

    # remove white edges by set subplot margin
    plt.subplots_adjust(left=0, right=1, bottom=0, top=1)
    ax = plt.gca()
    ax.axis('off')

    polygons = []
    color = []
    for i, (bbox, label) in enumerate(zip(bboxes, labels)):
        bbox_int = bbox.astype(np.int32)
        poly = [[bbox_int[0], bbox_int[1]], [bbox_int[0], bbox_int[3]],
                [bbox_int[2], bbox_int[3]], [bbox_int[2], bbox_int[1]]]
        np_poly = np.array(poly).reshape((4, 2))
        polygons.append(Polygon(np_poly))
        color.append(bbox_color[label])
        label_text = class_names[
            label] if class_names is not None else f'class {label}'
        if len(bbox) > 4:
            label_text += f'|{bbox[-1]:.02f}'
        # ax.text(
        #     bbox_int[0],
        #     bbox_int[1],
        #     f'{label_text}',
        #     bbox={
        #         'facecolor': 'black',
        #         'alpha': 0.8,
        #         'pad': 0.7,
        #         'edgecolor': 'none'
        #     },
        #     color=text_color[label],
        #     fontsize=font_size,
        #     verticalalignment='top',
        #     horizontalalignment='left')
        if segms is not None:
            color_mask = mask_color[labels[i]]
            mask = segms[i].astype(bool)
            img[mask] = img[mask] * 0.5 + color_mask * 0.5

    plt.imshow(img)

    p = PatchCollection(
        polygons, facecolor='none', edgecolors=color, linewidths=thickness)
    ax.add_collection(p)

    stream, _ = canvas.print_to_buffer()
    buffer = np.frombuffer(stream, dtype='uint8')
    img_rgba = buffer.reshape(height, width, 4)
    rgb, alpha = np.split(img_rgba, [3], axis=2)
    img = rgb.astype('uint8')
    img = mmcv.rgb2bgr(img)

    if show:
        # We do not use cv2 for display because in some cases, opencv will
        # conflict with Qt, it will output a warning: Current thread
        # is not the object's thread. You can refer to
        # https://github.com/opencv/opencv-python/issues/46 for details
        if wait_time == 0:
            plt.show()
        else:
            plt.show(block=False)
            plt.pause(wait_time)
    if out_file is not None:
        mmcv.imwrite(img, out_file)

    plt.close()

    return img


def imshow_gt_det_bboxes(img,
                         annotation,
                         result,
                         class_names=None,
                         score_thr=0,
                         gt_bbox_color=(255, 102, 61),
                         gt_text_color=(255, 102, 61),
                         gt_mask_color=(255, 102, 61),
                         det_bbox_color=(72, 101, 241),
                         det_text_color=(72, 101, 241),
                         det_mask_color=(72, 101, 241),
                         thickness=2,
                         font_size=13,
                         win_name='',
                         show=True,
                         wait_time=0,
                         out_file=None):
    """General visualization GT and result function.

    Args:
      img (str | ndarray): The image to be displayed.
      annotation (dict): Ground truth annotations where contain keys of
          'gt_bboxes' and 'gt_labels' or 'gt_masks'.
      result (tuple[list] | list): The detection result, can be either
          (bbox, segm) or just bbox.
      class_names (list[str]): Names of each classes.
      score_thr (float): Minimum score of bboxes to be shown. Default: 0.
      gt_bbox_color (list[tuple] | tuple | str | None): Colors of bbox lines.
          If a single color is given, it will be applied to all classes.
          The tuple of color should be in RGB order. Default: (255, 102, 61).
      gt_text_color (list[tuple] | tuple | str | None): Colors of texts.
          If a single color is given, it will be applied to all classes.
          The tuple of color should be in RGB order. Default: (255, 102, 61).
      gt_mask_color (list[tuple] | tuple | str | None, optional): Colors of
          masks. If a single color is given, it will be applied to all classes.
          The tuple of color should be in RGB order. Default: (255, 102, 61).
      det_bbox_color (list[tuple] | tuple | str | None):Colors of bbox lines.
          If a single color is given, it will be applied to all classes.
          The tuple of color should be in RGB order. Default: (72, 101, 241).
      det_text_color (list[tuple] | tuple | str | None):Colors of texts.
          If a single color is given, it will be applied to all classes.
          The tuple of color should be in RGB order. Default: (72, 101, 241).
      det_mask_color (list[tuple] | tuple | str | None, optional): Color of
          masks. If a single color is given, it will be applied to all classes.
          The tuple of color should be in RGB order. Default: (72, 101, 241).
      thickness (int): Thickness of lines. Default: 2.
      font_size (int): Font size of texts. Default: 13.
      win_name (str): The window name. Default: ''.
      show (bool): Whether to show the image. Default: True.
      wait_time (float): Value of waitKey param. Default: 0.
      out_file (str, optional): The filename to write the image.
          Default: None.

    Returns:
        ndarray: The image with bboxes or masks drawn on it.
    """
    assert 'gt_bboxes' in annotation
    assert 'gt_labels' in annotation
    assert isinstance(
        result,
        (tuple, list)), f'Expected tuple or list, but get {type(result)}'

    gt_masks = annotation.get('gt_masks', None)
    if gt_masks is not None:
        gt_masks = mask2ndarray(gt_masks)

    img = mmcv.imread(img)

    img = imshow_det_bboxes(
        img,
        annotation['gt_bboxes'],
        annotation['gt_labels'],
        gt_masks,
        class_names=class_names,
        bbox_color=gt_bbox_color,
        text_color=gt_text_color,
        mask_color=gt_mask_color,
        thickness=thickness,
        font_size=font_size,
        win_name=win_name,
        show=False)

    if isinstance(result, tuple):
        bbox_result, segm_result = result
        if isinstance(segm_result, tuple):
            segm_result = segm_result[0]  # ms rcnn
    else:
        bbox_result, segm_result = result, None

    bboxes = np.vstack(bbox_result)
    labels = [
        np.full(bbox.shape[0], i, dtype=np.int32)
        for i, bbox in enumerate(bbox_result)
    ]
    labels = np.concatenate(labels)

    segms = None
    if segm_result is not None and len(labels) > 0:  # non empty
        segms = mmcv.concat_list(segm_result)
        segms = mask_util.decode(segms)
        segms = segms.transpose(2, 0, 1)

    img = imshow_det_bboxes(
        img,
        bboxes,
        labels,
        segms=segms,
        class_names=class_names,
        score_thr=score_thr,
        bbox_color=det_bbox_color,
        text_color=det_text_color,
        mask_color=det_mask_color,
        thickness=thickness,
        font_size=font_size,
        win_name=win_name,
        show=show,
        wait_time=wait_time,
        out_file=out_file)
    return img

更改说明

添加不同类别显示不同颜色的代码
    import random
    bbox_color = [[random.randint(0, 255)/255 for _ in range(3)] for _ in range(10)]

注意:bbox_color 要覆盖掉之前的bbox_color,详情可以看更改后的代码

去掉标签和置信度

imshow_det_bboxes中下面的代码注释掉即可。

        # ax.text(
        #     bbox_int[0],
        #     bbox_int[1],
        #     f'{label_text}',
        #     bbox={
        #         'facecolor': 'black',
        #         'alpha': 0.8,
        #         'pad': 0.7,
        #         'edgecolor': 'none'
        #     },
        #     color=text_color[label],
        #     fontsize=font_size,
        #     verticalalignment='top',
        #     horizontalalignment='left')
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gorgeous(๑>؂<๑)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值