数学建模论文写作方法(视频详见up主:数学建模学习交流)

### Qwen 2.5 大规模模型微调实践指南 #### 准备工作 为了成功地对Qwen 2.5进行微调,需准备必要的环境配置和数据集。确保安装了支持CUDA的PyTorch版本以及transformers库[^1]。 ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117 pip install transformers datasets ``` #### 加载预训练模型 加载Qwen 2.5的基础架构并初始化权重参数: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name_or_path = "Qwen/Qwen-2.5" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) ``` #### 数据处理 针对特定任务调整输入格式,比如对于对话生成场景可以构建如下形式的数据样本: ```python def prepare_data(input_texts, target_texts): inputs = tokenizer.batch_encode_plus( input_texts, padding=True, truncation=True, max_length=512, return_tensors="pt" ) labels = tokenizer.batch_encode_plus( target_texts, padding=True, truncation=True, max_length=512, return_tensors="pt" )["input_ids"] return { 'input_ids': inputs['input_ids'], 'attention_mask': inputs['attention_mask'], 'labels': labels } ``` #### 微调过程 定义训练循环,在此过程中更新模型参数以适应新领域或具体应用需求: ```python import torch.optim as optim optimizer = optim.AdamW(model.parameters(), lr=5e-5) for epoch in range(num_epochs): for batch in dataloader: outputs = model(**batch) loss = outputs.loss optimizer.zero_grad() loss.backward() optimizer.step() print(f'Epoch {epoch}, Loss: {loss.item()}') ``` #### 模型评估与保存 完成一轮或多轮迭代后,通过验证集测试性能,并将最终版模型存档以便后续部署使用: ```python # Save the fine-tuned model and tokenizer to disk. output_dir = "./fine_tuned_qwen_2.5" model.save_pretrained(output_dir) tokenizer.save_pretrained(output_dir) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值