机器学习实战——朴素贝叶斯

本文介绍了朴素贝叶斯分类器的基本原理,包括贝叶斯定理和特征条件独立假设,并探讨了参数估计方法。接着,详细阐述了在Scikit-learn中如何实现GaussianNB、MultinomialNB和BernoulliNB三种分类算法,特别指出它们适用于不同的数据分布情况。此外,还提及了GaussianNB的增量式训练方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 模型介绍

1.1 朴素贝叶斯分类器

朴素贝叶斯是基于贝叶斯定理及特征条件独立的假设来实现分类的方法,就是在已知先验概率的前提下,求后验概率的最大值。
设样本集合为 x x x ,其属性集合为 { x 1 , x 2 , ⋯   , x d } \{x_1,x_2,\cdots,x_d\} { x1,x2,,xd} ,即某一样本的特征属性数目为 d d d ,对应的类标记(标签)为 y = { c 1 , c 2 , ⋯   , c N } y=\{c_1,c_2,\cdots,c_N\} y={ c1,c2,,c

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值