深度学习基础--BP和训练--深度理解SGD的有效性

为什么 SGD 在深度学习模型的训练中如此有效?

  通过大量实验佐证了神经网络在用 SGD训练过程中实现的两个 phases:
  1) empirical error minimization(ERM);
  2)information compression with the training error constraints。

  其实这个观察和分类是在大家对 SGD 训练 NN 熟知的理解,前段中随机梯度的的均值会 dominate 随机梯度的 variance, 所以主要在做 ERM,而后段随着优化的进行,gradient 的均值会逐渐趋近于零,variance 会 dominate(占据优势), 相当于做 diffusion(扩散)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值