大数据的5V特征

IBM提出了大数据”5V”特点:

一、Volume:数据量大,包括采集、存储和计算的量都非常大。大数据的起始计量单位至少是P(1000个T)、E(100万个T)或Z(10亿个T)。

二、Variety:种类和来源多样化。包括结构化、半结构化和非结构化数据,具体表现为网络日志、音频、视频、图片、地理位置信息等等,多类型的数据对数据的处理能力提出了更高的要求。

三、Value:数据价值密度相对较低,或者说是浪里淘沙却又弥足珍贵。随着互联网以及物联网的广泛应用,信息感知无处不在,信息海量,但价值密度较低,如何结合业务逻辑并通过强大的机器算法来挖掘数据价值,是大数据时代最需要解决的问题。

四、Velocity:数据增长速度快,处理速度也快,时效性要求高。比如搜索引擎要求几分钟前的新闻能够被用户查询到,个性化推荐算法尽可能要求实时完成推荐。这是大数据区别于传统数据挖掘的显著特征。

五、Veracity:数据的准确性和可信赖度,即数据的质量。

### 大数据5V特性的具体含义 #### Volume(大量) Volume指的是数据量的巨大规模。随着信息技术的发展,每天产生的数据量呈指数级增长。这种大规模的数据不仅来自于传统的数据库记录,还包括社交媒体、物联网设备等多种渠道。面对如此庞大的数据集合,传统的关系型数据库管理系统难以胜任高效存储和处理的任务[^1]。 #### Velocity(高速) Velocity表示数据生成的速度以及处理速度的要求。现代应用程序和服务需要实时响应用户的请求并提供即时反馈;同时,在线业务环境中的事件发生频率极高,这就要求系统具备快速摄取、处理和分析的能力,以便及时做出反应和支持决策制定[^2]。 #### Variety(多样) Variety强调的是不同类型的数据形式共存的现象。除了结构化表格外,还有半结构化的XML/JSON文件、非结构化的文本文档、图像视频等多媒体资源。不同种类的信息源带来了复杂性和异构性问题,增加了集成与解析难度,同时也为企业提供了更广泛的价值挖掘机会[^3]。 #### Veracity(真实性) Veracity关注数据的质量及其可信度。由于来源众多且质量参差不齐,如何评估和验证收集到的信息成为一大难题。错误或误导性的输入可能导致错误结论甚至灾难性后果。因此,在利用大数据之前必须经过严格的清洗过滤流程以确保最终使用的资料真实可靠[^4]。 #### Value(低价值密度) Value是指从海量信息中提取有用情报的比例较低这一事实。尽管总体上拥有巨量的数据资产,但真正蕴含商业洞察力的部分可能只占很小一部分。为了找到那些具有高附加值的内容,往往需要投入大量的计算资源和技术手段来进行深入探索和模式识别工作。 ```python def analyze_big_data(data_stream, threshold=0.01): """ 对给定的大数据流进行初步筛选, 只保留潜在有价值部分供进一步分析 参数: data_stream (list): 输入的大数据样本列表 threshold (float): 判断是否有价值的标准,默认为百分之一 返回: valuable_data (list): 经过筛选后的高质量子集 """ total_count = len(data_stream) valuable_data = [] for item in data_stream: if evaluate_item_quality(item) >= threshold * total_count: valuable_data.append(item) return valuable_data ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值