👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
多源动态最优潮流的分布鲁棒优化方法研究(基于IEEE 118节点系统)
💥1 概述
文献来源:
多源动态最优潮流的分布鲁棒优化方法研究(基于IEEE 118节点系统)
摘要:针对大规模清洁能源接入电网引起的系统鲁棒性和经济性协调问题,提出含风–光–水–火多种能源的分布鲁棒动态最优潮流模型。采用分布鲁棒优化方法将风光不确定性描述为包含概率分布信息的模糊不确定集。将模糊不确定集构造为一个以风光预测误差经验分布为中心,以Wasserstein距离为半径的Wasserstein球。在满足风光预测误差服从模糊不确定集中极端概率分布情况下最小化运行费用。由于梯级水电厂模型为混合整数模型,为了提高计算效率,将交流潮流近似为解耦线性潮流。最后,某703节点实际电力系统的仿真结果表明,所提方法可以通过控制样本大小和Wasserstein半径置信度的方法有效平衡系统的鲁棒性与经济性。
关键词:
随着可再生能源发电和市场自由化的深入发展,电力系统运行点变得越来越不确定[1]。目前系
统负荷已经可以被精确预测,但风电和光伏发电预测则远远达不到保障电网安全运行的要求。火电机组生产成本高,且急剧升降时需要付出附加燃料消耗的代价。而水电由于其成本低廉,调节迅速等特点通常用于快速响应风电和光伏的变化。在日前调度中考虑多种能源之间的互补特性有助于减少风光不确定性的影响和提高系统运行的可靠性。因此,研究风–光–水–火多种能源的协同优化,并发展有效的不确定性优化方法及求解技术是当前研究人员亟需解决的关键问题。 如何处理风光的不确定性是多源协同优化问题的重要难点之 一 ,随机优化 (stochastic optimization,SO)是一种有效的方法。其假设风光出力误差服从某一确定的概率分布,并以最小化发电费用期望等为目标函数从而建立满足一定概率水平约束的随机优化模型。目前该方法已被用于经济调度、机组组合[2-4]、最优备用容量[5-6]等问题中。研究表明,根据随机规划求得的策略在不确定条件下能够使目标的期望达到一定的效果。但是,随机优化建模需要知完整的不确定参数概率分布信息。对于风光预测误差,在实际当中很难获取。
文章讲解见第4部分。
一、多源动态最优潮流(DOPF)的定义与挑战
多源动态最优潮流(Dynamic Optimal Power Flow, DOPF)是传统最优潮流(OPF)的扩展,旨在解决含多种电源(火电、水电、风电、光伏等)及动态时间耦合的电力系统优化问题。其核心目标是在满足系统安全约束的前提下,实现运行成本最小化或经济效益最大化。随着可再生能源渗透率提高,DOPF面临以下挑战:
- 不确定性加剧:风光出力具有强随机性和间歇性,传统确定性优化难以应对。
- 多时间尺度耦合:需协调机组启停、储能充放电等跨时段决策。
- 混合整数非线性特性:梯级水电厂、离散控制设备(如变压器分接头)引入非凸性。
二、分布鲁棒优化(DRO)的基本原理
DRO结合了随机规划(考虑概率分布)与鲁棒优化(考虑最坏场景)的优势,通过构建 模糊集(Ambiguity Set) 描述不确定参数的概率分布特征。其数学模型一般形式为:
其中,F为模糊集,ξ为不确定性变量(如风光出力)。常用的模糊集构建方法包括:
- 基于矩信息:约束分布的均值、方差等统计量。
- 基于Wasserstein距离:以经验分布为中心,构造以Wasserstein球为边界的模糊集,具有数据驱动特性。
三、IEEE 118节点系统的拓扑与参数特性
IEEE 118节点系统是电力系统分析的经典测试平台,其特点包括:
- 结构复杂性:包含118个节点、54台发电机、64个负荷节点、179条线路,拓扑呈现小世界特性(平均度数≈3),易受连锁故障影响。
- 多源特性:可扩展为含风电、光伏、储能的多能源系统,适合验证DRO-DOPF模型的鲁棒性。
- 动态约束:线路容量、电压波动、机组爬坡率等需在时间序列中严格满足。
四、DRO与DOPF的融合方法
1. 模型构建
- 目标函数:最小化总运行成本(火电燃料费、弃风/光/水成本、储能损耗等)。
- 不确定性建模:采用Wasserstein模糊集刻画风光预测误差,平衡经济性与保守性。
- 动态约束:引入时间耦合变量(如储能SOC、水电库容)及线性化潮流方程(解耦交流潮流)以降低计算复杂度。
2. 求解算法
- 凸松弛技术:将非凸交流潮流方程转化为二阶锥规划(SOCP)问题,确保全局最优解。
- 分解协调算法:采用Benders分解或列与约束生成(C&CG)处理混合整数规划。
- 数据驱动优化:结合深度强化学习(DRL)实现实时调度,提升模型对高维不确定性的适应性。
3. 关键创新点
- 弃水成本建模:在目标函数中引入弃水惩罚项,结合水电-风光互补特性减少弃水率(案例显示减少85%以上)。
- 多时间尺度协调:分阶段优化机组组合(日前)与实时功率分配(日内),提升经济性。
五、实际应用案例与仿真结果
以某703节点系统和改进的IEEE 118节点系统为例,验证DRO-DOPF模型的性能:
- 经济性提升:相比传统鲁棒优化,综合运行成本降低约12%。
- 鲁棒性验证:通过调整Wasserstein半径与样本量,实现经济性与安全性的帕累托前沿分析。
- 计算效率:采用线性化潮流和SOCP松弛后,求解时间控制在3分钟内,满足实时调度需求。
六、基于IEEE 118节点的典型建模方法
- 混合整数规划(MIP) :处理梯级水电厂的离散变量,结合GUROBI求解器实现高效计算。
- 改进启发式算法:如平衡优化器(MEO)、Hodotermitidae算法,用于多目标优化(网损、电压偏差、发电成本)。
- 数据驱动模型:基于深度神经网络的OPF快速计算,通过可信训练减少映射误差。
七、未来研究方向
- 高维不确定性处理:探索基于协变量信息的DRO模型,同时考虑风光出力与负荷波动。
- 碳约束集成:将碳排放流理论融入DOPF,实现源-荷协同低碳调度。
- 信息物理融合:结合信息网与电力网的耦合特性,提升系统抗攻击能力。
公式与表格示例
- Wasserstein模糊集构建:
-
IEEE 118节点系统优化算法对比:
算法 最佳网损 (MW) 平均CPU时间 (s) 标准差 MEO 108.09 39.12 0.5974 ALC-PSO 121.53 1045.10 - 传统鲁棒优化 132.99 600.00 1.2000
总结
多源动态最优潮流的分布鲁棒优化方法通过融合不确定性的概率描述与动态约束的时序协调,显著提升了高比例可再生能源系统的经济性与安全性。基于IEEE 118节点的仿真验证了模型的有效性,未来研究需进一步解决高维不确定性、碳约束与信息物理融合等挑战。
📚2 运行结果
IEEE118节点图:
原文图:
代码运行图:
原文图:
复现图:
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]竺如洁,韦化,白晓清.多源动态最优潮流的分布鲁棒优化方法[J].中国电机工程学报,2020,40(11):3489-3498.DOI:10.13334/j.0258-8013.pcsee.190665.