深度学习:
通过模仿人脑神经网络的结构和功能来实现对数据的学习、分类和模式识别。通过多层次的神经网络结构来自动学习特征表示,从而实现对复杂数据的高效处理和分析。
说简单点,就是:通过大量的数据输入和神经网络的层层处理,从数据中提取特征并进行分类、回归等任务。
强化学习:
目标是通过与环境的交互来学习最优的行为策略,以达到最大化预期的累积奖励。在强化学习中,智能体通过观察环境的状态、执行动作并接收奖励来学习最佳的决策策略。
讲白了就是训练一个智能体,通过不断的试错,让它从一个白痴变成高手。
深度强化学习:
在强化学习的某些任务环境中这些环境可能会非常复杂,依靠单纯的强化学习已经无法满足需要,这个时候就需要引入深度学习来帮忙了。目标就是实现智能体在复杂环境中的高效决策。
最经典的深度强化学习算法就是DQN算法,在这个算法提出后又发展出了double DQN,分布dqn,彩虹dqn等等一系列dqn衍生算法。
在这里推荐一个非常好用的强化学习库,stable_baselines3库,里面内置了一堆好用的RL算法,DQN,PPO等等都在里面,真正做到开箱即用。