COCO数据集80类别名称与id号的对应关系(字典形式)

本文探讨了如何利用现代计算机视觉技术,如深度学习的物体检测,与大数据处理相结合,提升智能应用的精度。通过实例介绍前端开发中的人脸识别和后端开发中的数据挖掘案例,展示了技术如何改变我们理解并利用周围世界的方式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

网上看了很多都是文本型的对应关系,为方便编程,写成如下python字典形式:

{1: 'person', 2: 'bicycle', 3: 'car', 4: 'motorcycle', 5: 'airplane', 6: 'bus', 7: 'train', 8: 'truck',
           9: 'boat', 10: 'traffic light', 11: 'fire hydrant', 13: 'stop sign', 14: 'parking meter', 15: 'bench',
           16: 'bird', 17: 'cat', 18: 'dog', 19: 'horse', 20: 'sheep', 21: 'cow', 22: 'elephant', 23: 'bear', 24: 'zebra',
           25: 'giraffe', 27: 'backpack', 28: 'umbrella', 31: 'handbag', 32: 'tie', 33: 'suitcase', 34: 'frisbee',
           35: 'skis', 36: 'snowboard', 37: 'sports ball', 38: 'kite', 39: 'baseball bat', 40: 'baseball glove',
           41: 'skateboard', 42: 'surfboard', 43: 'tennis racket', 44: 'bottle', 46: 'wine glass', 47: 'cup',
           48: 'fork', 49: 'knife', 50: 'spoon', 51: 'bowl', 52: 'banana', 53: 'apple', 54: 'sandwich', 55: 'orange',
           56: 'broccoli', 57: 'carrot', 58: 'hot dog', 59: 'pizza', 60: 'donut', 61: 'cake', 62: 'chair', 63: 'couch',
           64: 'potted plant', 65: 'bed', 67: 'dining table', 70: 'toilet', 72: 'tv', 73: 'laptop', 74: 'mouse',
           75: 'remote', 76: 'keyboard', 77: 'cell phone', 78: 'microwave', 79: 'oven', 80: 'toaster', 81: 'sink',
           82: 'refrigerator', 84: 'book', 85: 'clock', 86: 'vase', 87: 'scissors', 88: 'teddy bear', 89: 'hair drier',
           90: 'toothbrush'}
### COCO 数据集文件格式说明 COCO(Common Objects in Context)数据集是一种广泛应用于目标检测、图像分割以及图像描述生成等任务的数据集。其文件结构和 JSON 格式的定义非常清晰,便于开发者理解和使用。 #### 1. 主要组成部分 COCO 数据集的核心是由多个部分组成的 JSON 文件,这些部分通过键值对的形式存储。以下是主要的键及其含义: - **`info`**: 提供关于数据集的一般信息,例如版本、贡献者列表、日期等[^2]。 - **`licenses`**: 描述数据集中每张图片的许可协议信息。 - **`images`**: 存储有关图片的信息数组,每一项表示一张图片的具体属性,包括 `id`, `width`, `height`, `file_name` 等字段。 - **`annotations`**: 包含标注信息的数组,用于描述对象的位置、类别以及其他细节。对于目标检测任务,通常会包含 `bbox` (边界框坐标), `category_id` (类别 ID),以及可选的 `segmentation` (多边形分割)。 - **`categories`**: 定义了数据集中所有可能类别的集合,每个类别都有唯一的 `id` 和对应名称 `name`。 #### 2. Annotation 的具体格式 针对不同的任务需求,COCO 数据集提供了多种类型的标注方式。以下是一些常见的标注字段解释: - **`id`**: 唯一标识符,用来区分每一个标注实例[^1]。 - **`image_id`**: 关联到某一幅特定图像的唯一编,表明该标注属于哪张图片。 - **`caption`**: 对于图像描述任务而言,这是对该图的一个自然语言描述字符串。 当处理的是物体识别或者实例分割等问题时,则还需要额外关注以下几个参数: - **`bbox`**: 表达形式为[x,y,width,height],其中(x,y)代表左上角顶点位置;width和height分别指代矩形区域宽度高度。 - **`area`**: 计算所得的目标面积大小,在评估指标计算过程中可能会被用到。 - **`iscrowd`**: 如果取值为0则意味着这是一个单独个体而非群体情况下的密集排列状况;如果等于1的话就表示存在重叠现象严重的情况,此时推荐采用mask而不是简单的bounding box来进行更精确地定位。 #### 示例代码展示如何加载并查看基本结构 下面给出了一段Python脚本演示怎样利用标准库中的json模块来解析官方发布的验证集元数据(`instances_val2017.json`)的内容概览: ```python import json # 打开并读取JSON文件内容 val = json.load(open('instances_val2017.json', 'r')) # 输出顶层字典所包含的所有顶级关键字 print(val.keys()) ``` 运行上述程序片段之后将会得到如下所示的结果: ``` dict_keys(['info', 'licenses', 'images', 'annotations', 'categories']) ``` 这证实了我们之前提到过的五个核心组件确实存在于实际使用的案例当中。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值