论文《CrossCBR: Cross-view Contrastive Learning for Bundle Recommendation》阅读

论文概况

本文是2022年KDD上的一篇捆绑推荐论文,通过使用两个简单有效的lightgcn聚合方式处理U-B图和U-I-B图,利用对比学习对齐两个视图的信息,最终对用户捆绑点击行为进行预测。

Introduction

作者提出问题

  • 捆绑推荐模型一般包含U-B图和U-I-B图,然而现阶段模型中两种视图的协作关系被简单的建模甚至忽略了,例如:
    在这里插入图片描述

bundle view更关注用户之间的行为相似性(协同过滤),item view更关注用户的点击内容相似性。相应的,从U-B图看来,模型会给u1推荐b4,然而从U-I-B图看,模型应该推荐b2和b3。因此简单的聚合处理两个图信息是不合理的。
对于上述问题,作者提出了CrossCBR模型
(1) 在捆绑推荐中建立跨视图协作关联
(2) 提出了一种简单而有效的捆绑推荐器CrossCBR,通过跨视图对比学习对两个视图之间的合作关联进行建模。

Method

在这里插入图片描述

A.Learning of Two Views’ Representations

捆绑推荐需要捆绑视角下的用户表征、捆绑表征,以及物品视角下的用户表征、物品表征、捆绑表征。在CrossCBR中,作者使用简单的lightgcn聚合更新方式来求得上述表征。bundle view下计算如下:

{ e u B ( k ) = ∑ b ∈ N u 1 ∣ N u ∣ ∣ N b ∣ e b B ( k − 1 ) , e b B ( k ) = ∑ u ∈ N b 1 ∣ N b ∣ ∣ N u ∣ e u B ( k − 1 ) , (1) \left\{\begin{array}{l} \mathrm{e}_{u}^{B(k)}=\sum_{b \in \mathcal{N}_{u}} \frac{1}{\sqrt{\left|\mathcal{N}_{u}\right|} \sqrt{\left|\mathcal{N}_{b}\right|}} \mathrm{e}_{b}^{B(k-1)}, \\ \mathrm{e}_{b}^{B(k)}=\sum_{u \in \mathcal{N}_{b}} \frac{1}{\sqrt{\left|\mathcal{N}_{b}\right|} \sqrt{\left|\mathcal{N}_{u}\right|}} \mathrm{e}_{u}^{B(k-1)}, \end{array}\right.\tag{1} euB(k)=bNuNu Nb 1ebB(k1),ebB(k)=uNbNb Nu 1euB(k1),(1)
e u B ∗ = ∑ k = 0 K e u B ( k ) , e b B ∗ = ∑ k = 0 K e b B ( k ) . (2) \mathrm{e}_{u}^{B *}=\sum_{k=0}^{K} \mathrm{e}_{u}^{B(k)}, \quad \mathrm{e}_{b}^{B *}=\sum_{k=0}^{K} \mathrm{e}_{b}^{B(k)}.\tag{2} euB=k=0KeuB(k),ebB=k=0KebB(k).(2)
同理,Item-view下计算如下:
{ e u I ( k ) = ∑ i ∈ N u 1 ∣ N u ∣ ∣ N i ∣ e i I ( k − 1 ) , e i I ( k ) = ∑ u ∈ N i 1 ∣ N i ∣ ∣ N u ∣ e u I ( k − 1 ) , (3) \left\{\begin{array}{l} \mathrm{e}_u^{I(k)}=\sum_{i \in \mathcal{N}_u} \frac{1}{\sqrt{\left|\mathcal{N}_u\right|} \sqrt{\left|\mathcal{N}_i\right|}} \mathrm{e}_i^{I(k-1)}, \\ \mathrm{e}_i^{I(k)}=\sum_{u \in \mathcal{N}_i} \frac{1}{\sqrt{\left|\mathcal{N}_i\right|} \sqrt{\left|\mathcal{N}_u\right|}} \mathrm{e}_u^{I(k-1)}, \end{array}\right.\tag{3} euI(k)=iNuNu Ni 1eiI(k1),eiI(k)=uNiNi Nu 1euI(k1),(3)
e u I ∗ = ∑ k = 0 K e u I ( k ) , e i I ∗ = ∑ k = 0 K e i I ( k ) (4) \mathrm{e}_u^{I *}=\sum_{k=0}^K \mathrm{e}_u^{I(k)}, \quad \mathrm{e}_i^{I *}=\sum_{k=0}^K \mathrm{e}_i^{I(k)}\tag{4} euI=k=0KeuI(k),eiI=k=0KeiI(k)(4)
Item-view下,捆绑表征是该捆绑包含的所有物品表征的均值:
e b I ∗ = 1 ∣ N b ∣ ∑ i ∈ N b e i I ∗ . t a g 5 \mathrm{e}_b^{I *}=\frac{1}{\left|\mathcal{N}_b\right|} \sum_{i \in \mathcal{N}_b} \mathrm{e}_i^{I *}.tag{5} ebI=Nb1iNbeiI.tag5

B.Cross-view Contrastive Learning

(1)CrossCBR采用了一种简单的边缘丢弃(ED)的随机增强方法,该方法随机去除一定比例原始图形的边数。边缘丢弃背后的基本原理在于保留了图的核心局部结构。因此,可以增强所学习的表示的鲁棒性以对抗某些噪声。
(2)CrossCBR使用消息丢弃(MD),它在图形学习期间以一定的丢弃率随机屏蔽传播嵌入的一些表征。
信息增强后的对比学习计算如下:
L U C = 1 ∣ U ∣ ∑ u ∈ U − log ⁡ exp ⁡ ( s ( e u B ∗ , e u I ∗ ) / τ ) ∑ v ∈ U exp ⁡ ( s ( e u B ∗ , e v I ∗ ) / τ ) L B C = 1 ∣ B ∣ ∑ b ∈ B − log ⁡ exp ⁡ ( s ( e b B ∗ , e b I ∗ ) / τ ) ∑ p ∈ B exp ⁡ ( s ( e b B ∗ , e p I ∗ ) / τ ) . (6) \begin{aligned} & \mathcal{L}_U^C=\frac{1}{|\mathcal{U}|} \sum_{u \in \mathcal{U}}-\log \frac{\exp \left(s\left(\mathrm{e}_u^{B *}, \mathrm{e}_u^{I^*}\right) / \tau\right)}{\sum_{v \in \mathcal{U}} \exp \left(s\left(\mathrm{e}_u^{B^*}, \mathrm{e}_v^{I *}\right) / \tau\right)} \\ & \mathcal{L}_B^C=\frac{1}{|\mathcal{B}|} \sum_{b \in \mathcal{B}}-\log \frac{\exp \left(s\left(\mathrm{e}_b^{B *}, \mathrm{e}_b^{I *}\right) / \tau\right)}{\sum_{p \in \mathcal{B}} \exp \left(s\left(\mathrm{e}_b^{B *}, \mathrm{e}_p^{I *}\right) / \tau\right)}. \end{aligned}\tag{6} LUC=U1uUlogvUexp(s(euB,evI)/τ)exp(s(euB,euI)/τ)LBC=B1bBlogpBexp(s(ebB,epI)/τ)exp(s(ebB,ebI)/τ).(6)
对比学习损失为:
L C = 1 2 ( L U C + L B C ) (7) \mathcal{L}^C=\frac{1}{2}\left(\mathcal{L}_U^C+\mathcal{L}_B^C\right)\tag{7} LC=21(LUC+LBC)(7)

C.Prediction and Optimization

本文中的预测方法为两个视图下的相似度和:
y u , b ∗ = e u B ∗ ⊤ e b B ∗ + e u I ∗ ⊤ e b I ∗ (8) y_{u, b}^*=\mathrm{e}_u^{B * \top} \mathrm{e}_b^{B *}+\mathrm{e}_u^{I * \top} \mathrm{e}_b^{I *}\tag{8} yu,b=euBebB+euIebI(8)
损失函数为:
L B P R = ∑ ( u , b , b ′ ) ∈ Q − ln ⁡ σ ( y u , b ∗ − y u , b ′ ∗ ) . (9) \mathcal{L}^{B P R}=\sum_{\left(u, b, b^{\prime}\right) \in Q}-\ln \sigma\left(y_{u, b}^*-y_{u, b^{\prime}}^*\right) .\tag{9} LBPR=(u,b,b)Qlnσ(yu,byu,b).(9)
L = L B P R + λ 1 L C + λ 2 ∥ Θ ∥ 2 2 (10) \mathcal{L}=\mathcal{L}^{B P R}+\lambda_1 \mathcal{L}^C+\lambda_2\|\Theta\|_2^2\tag{10} L=LBPR+λ1LC+λ2∥Θ22(10)

总结

CrossCBR以相对简单而有效的方法进行捆绑推荐,这是我看的第一篇捆绑推荐文章,采用的数据集与其他推荐方向不太相同,无法与其他方向的推荐模型横向对比性能。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值