论文阅读《No Prejudice! Fair Federated Graph Neural Networks for Personalized Recommendation》

论文概况

本文是2024 AAAI的一篇联邦推荐论文,提出了一个公平性、隐私性、个性化兼顾的联邦推荐框架。

Introduction

  • 我们引入了具有隐私保护的归纳图扩展算法,该算法可以最大限度地减少通信开销,同时有效地从分布式用户数据中捕获高阶交互
  • 为了加强隐私保护,我们合并了一个额外的LDP模块用于模型更新以及保护组统计数据的隐私

Method

在这里插入图片描述

A.整体架构

首先,每个用户使用归纳私有图扩展算法扩展局部子图,以包含高阶交互。通过匹配加密项和分布匿名用户嵌入,扩展图包括每个用户的邻居与协同交互的项。对于每一个与m个项目交互的用户界面,以及与r个有共同交互项目的邻居,用户嵌入是 z i u , z_i^u, ziu,物品嵌入是 [ z i , 1 t , z i , 2 t , ⋯ z i , m t ] \left[z_{i,1}^t,z_{i,2}^t,\cdots z_{i,m}^t\right] [zi,1t,zi,2t,zi,mt],邻居嵌入是 [ z i , 1 u , z i , 2 u , ⋯ z i , r u ] \begin{bmatrix}z_{i,1}^u,z_{i,2}^u,\cdots z_{i,r}^u\end{bmatrix} [zi,1u,zi,2u,zi,ru]。在图神经网络处理后,我们得到了 h i u , [ h i , 1 t , h i , 2 t , ⋯ h i , m t ]   a n d   [ h i , 1 u , h i , 2 u , ⋯ h i , r u ] h_{i}^{u}, \left[h_{i,1}^{t},h_{i,2}^{t},\cdots h_{i,m}^{t}\right]\mathrm{~and~}\left[h_{i,1}^{u},h_{i,2}^{u},\cdots h_{i,r}^{u}\right] hiu,[hi,1t,hi,2t,hi,mt] and [hi,1u,hi,2u,hi,ru]
相应的损失是
L u t i l u = 1 m ∑ j = 1 m ∣ y ^ i , j − y i , j ∣ 2 \mathcal{L}_{util}^{u}=\frac{1}{m}\sum_{j=1}^{m}|\hat{y}_{i,j}-y_{i,j}|^{2} Lutilu=m1j=1my^i,jyi,j2
在该文章中,我们将公平性转化成损失加入到整体损失中
L = L u t i l + β L f a i r \mathcal{L}=\mathcal{L}_{util}+\beta\mathcal{L}_{fair} L=Lutil+βLfair
其中,公平性损失的计算如下
L f a i r ( M , S 0 , S 1 ) = ∣ 1 ∣ S 0 ∣ ∑ u ∈ S 0 M ( u ) − 1 ∣ S 1 ∣ ∑ u ∈ S 1 M ( u ) ∣ α \mathcal{L}_{fair}(\mathcal{M},S_0,S_1)=\left|\frac{1}{|S_0|}\sum_{u\in S_0}\mathcal{M}(u)-\frac{1}{|S_1|}\sum_{u\in S_1}\mathcal{M}(u)\right|^\alpha Lfair(M,S0,S1)= S01uS0M(u)S11uS1M(u) α
为了整体方案的可行性,我们定义 M u = − L u t i l u \mathcal{M}_{u} = -\mathcal{L}_{util}^{u} Mu=Lutilu。因此,损失的梯度为
∇ Θ u = ∂ ∂ Θ u L u t i l u + β ∂ ∂ Θ u L f a i r \nabla\Theta_u=\frac{\partial}{\partial\Theta_u}\mathcal{L}_{util}^u+\beta\frac{\partial}{\partial\Theta_u}\mathcal{L}_{fair} Θu=ΘuLutilu+βΘuLfair
其中,公平性梯度为
∂ ∂ Θ u L f a i r = − R ∣ P − Q ∣ α − 1 ∂ ∂ Θ u L u t i l u \frac{\partial}{\partial\Theta_u}\mathcal{L}_{fair}=-R\left|P-Q\right|^{\alpha-1}\frac{\partial}{\partial\Theta_u}\mathcal{L}_{util}^{u} ΘuLfair=RPQα1ΘuLutilu
因此,整体梯度为
∇ Θ u = ( 1 − β R ∣ P − Q ∣ α − 1 ) ∂ ∂ Θ u L u t i l u = L ∂ ∂ Θ u L u t i l u \nabla\Theta_{u}=\left(1-\beta R\left|P-Q\right|^{\alpha-1}\right)\frac{\partial}{\partial\Theta_{u}}\mathcal{L}_{util}^{u}=L\frac{\partial}{\partial\Theta_{u}}\mathcal{L}_{util}^{u} Θu=(1βRPQα1)ΘuLutilu=LΘuLutilu

B.隐私保护

  • 安全的用户-项目本地图扩展:每个用户使用公钥对项目进行加密,并将加密的id上传到服务器。匹配加密项后,服务器将匿名用户嵌入分发给每个用户,以扩展其本地子图。
  • 隐私保护模型更新:我们使用标准的LDP技术来克服用户-项目交互历史的隐私泄露
  • 安全群统计信息聚合:为了更新全局模型,服务器需要组统计信息P和Q,即用户是属于S0还是S1的信息。在FL中,上传用户的敏感属性信息侵犯了用户的隐私。我们使用LDP以安全的方式聚合组统计信息。
    P p e r u ← 1 ( u ∈ S 0 ) M u + ϵ 1 , u , P a d d u ← 1 ( u ∈ S 0 ) + ϵ 3 , u Q p e r u ← 1 ( u ∈ S 1 ) M u + ϵ 2 , u , Q a d d u ← 1 ( u ∈ S 1 ) + ϵ 4 , u P_{per}^{u}\leftarrow1(u\in S_{0})\mathcal{M}_{u}+\epsilon_{1,u},P_{add}^{u}\leftarrow1(u\in S_{0})+\epsilon_{3,u}\\Q_{per}^{u}\leftarrow1(u\in S_{1})\mathcal{M}_{u}+\epsilon_{2,u},Q_{add}^{u}\leftarrow1(u\in S_{1})+\epsilon_{4,u} Pperu1(uS0)Mu+ϵ1,u,Paddu1(uS0)+ϵ3,uQperu1(uS1)Mu+ϵ2,u,Qaddu1(uS1)+ϵ4,u
    整体算法流程如下:
    在这里插入图片描述

C.结果

在这里插入图片描述

总结

本文介绍了一种公平性联邦推荐系统框架,解决隐私与公平性问题,可对比的框架比较少。

  • 11
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值