关于决策树损失函数来源的理解与推导

本文探讨了决策树学习中的损失函数,源于正则化的极大似然函数。通过反向推导,解释了叶节点实例数与经验熵乘积之和的含义,将其与极大似然函数联系起来,帮助读者深入理解决策树模型的损失函数。
摘要由CSDN通过智能技术生成

在阅读《统计学习方法》5.1.4决策树学习一节过程中,有如下一句话引起博主疑惑:决策树的损失函数通常是正则化的极大似然函数。书上并未给出具体推导,直到5.4决策树的剪枝中,直接给出了正则化的决策树损失函数:C_{\alpha }(T)=\sum_{t=1}^{|T|}N_{t}H_{t}(T)+a|T|。其中|T|代表叶节点个数,N_{t}表示具体某个叶节点的样例数,H_{t}(T)表示叶节点经验熵表示叶节点经验熵。

我们知道正则化的损失函数中前一项代表经验误差,而在概率模型中(决策树模型是一种概率模型),经验误差函数的获得往往通过将极大似然函数取反,即将求极大化为求极小而获得。因此,在概率模型中,极大似然函数与经验误差函数可以认为是相同的概念,那么必然就可以通过经验误差函数来推导出极大似然函数,以此来加深对决策树损失函数的理解。

我相信有相当一部分读者与博主一样,并不理解决策树损失函数的真正意义,表面上来看:将每个叶节点的实例个数与其经验熵的乘积相加,这究竟代表个什么玩意呢?现在,我将利用该损失函数反向推导出极大似然函数,当我们看到极大似然函数时&#

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值