【小模型】2024属于小模型!高性能SLM最新优化方案和热门应用分享,附配套模型

本文探讨了高性能的小型语言模型,如TinyLlama、LiteLlama和Phi-1.5,它们在资源有限的设备上表现出色。研究还涵盖了优化方案,如教小型模型推理的Orca2,以及大模型与小模型的结合,如SuperICL和emulatedfine-tuning。文章强调了小模型在节能、响应速度和灵活性上的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


这里的小模型指的小型语言模型(Small Language Model,简称SLM),通常用于解决资源受限或实时性要求较高的场景,比如一些边缘设备(智能手机、物联网设备和嵌入式系统等),大模型难以运行其上。

目前我们对大模型的探索已经到了瓶颈,因高能耗、巨大的内存需求和昂贵的计算成本,我们的技术创新工作受到了挑战与限制。而对比大模型,小模型耗资少、响应快、可移植性强、泛化能力高…在一些特定情况下,可以提供更高效、更灵活的选择。因此,更多人开始着眼于小巧且兼具高性能的小模型相关的研究。

一、高性能小模型

1.1 TinyLlama-1.1B

论文:TinyLlama: An Open-Source Small Language Model

一个开源的小型语言模型

「模型简介:」本文介绍了TinyLlama小型语言模型,该模型在大约1万亿个标记上进行了约3个周期的预训练,具有紧凑的1.1B参数规模。TinyLlama基于Llama 2(Touvron等人,2023b)的架构和分词器构建,利用了开源社区贡献的各种先进技术(例如FlashAttention(Dao,2023)),实现了更好的计算效率。尽管其规模相对较小,但TinyLlama在一系列下游任务中表现出色,显著优于现有规模相当的开源语言模型。

在这里插入图片描述

1.2 LiteLlama

「模型简介:」SLM-LiteLlama是对 Meta AI 的 LLaMa 2 的开源复刻版本,但模型规模显著缩小。它有 460M 参数,由 1T token 进行训练。LiteLlama-460M-1T 在RedPajama数据集上进行训练,并使用 GPT2Tokenizer 对文本进行 token 化。作者在 MMLU 任务上对该模型进行评估,结果证明,在参数量大幅减少的情况下,LiteLlama-460M-1T 仍能取得与其他模型相媲美或更好的成绩。

在这里插入图片描述

1.3 Phi-1、Phi-1.5、Phi-2

论文:Textbooks Are All You Need II: phi-1.5 technical report

phi -1.5技术报告

「模型简介:」本文继续研究基于Transformer的小型语言模型的能力。之前的工作包括一个1000万参数的模型,可以产生连贯的英语,以及一个13亿参数的模型,其Python编程性能接近最先进水平。作者采用了“Textbooks Are All You Need”的方法,专注于自然语言中的常识推理,并创建了一个新的13亿参数模型,名为phi-1.5。该模型在自然语言任务上的性能与大5倍的模型相当,在更复杂的推理任务上超越了大多数非前沿的大型语言模型。

在这里插入图片描述

1.4 RoBERTa

论文:RoBERTa: A Robustly Optimized BERT Pretraining Approach

一种鲁棒优化的BERT预训练方法

「模型简介:」本文介绍了BERT预训练的复制研究,仔细测量了许多关键超参数和训练数据大小的影响。作者发现BERT的训练不足,并且可以匹配或超过所有在其之后发布的模型的性能。作者的最佳模型在GLUE、RACE和SQuAD上取得了最先进的结果。这些结果强调了以前被忽视的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旅途中的宽~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值