lhy机器学习(五): ML Lecture Anomaly Detection (异常检测)(二)

并不是我们所有时候用分类器来进行异常检测都是好的,比如分类猫和狗,如果输入羊之类的,既没有猫的特征也没有狗的特征,就会把他放在边界上,信心分数就比较低。

那么有些东西比猫还像猫,比如老虎,比狗还像狗,比如狼,他们本应该信心分数比较低,因为他既不是猫也不是狗,但是却在猫和狗的特征上比猫和狗更强烈,因此会给分类器很大的信心分数。

那怎么解决这种问题呢

下面文献给出了一定思路,就是在给机器看这是正常的资料的同时,又给看一些异常的资料,那异常资料哪里来呢,可以使用生成模型进行模拟,生成一些看起来像正常的数据,但是他跟正常数据又有些不同,就像猫和虎一样,就是在训练的时候不仅仅给他看正常数据,同时还给他看一些异常的数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值