【深度学习】YOLOv5,金属表面的缺陷检测,GC10-DET数据集

目录:

数据集

数据集地址:

https://github.com/lvxiaoming2019/GC10-DET-Metallic-Surface-Defect-Datasets

数据集下载方式:

Download link:https://pan.baidu.com/s/1Zrd-gzfVhG6oKdVSa9zoPQ Verify Code:cdyt

其中有个excel,写了介绍:此数据集一共10种金属缺陷,每一种有多少张图也写在excel了:

在这里插入图片描述

数据集转换

数据集的lable文件夹下是每个图片的框和类别标记,是xml格式。

在这里插入图片描述

运行下面这个代码,可

### GC10-DET 数据集介绍 GC10-DET 是一个专门用于金属表面缺陷检测数据集[^1]。该数据集包含了多种类型的金属表面缺陷图像,旨在帮助研究人员开发和评估针对工业场景中的自动化质量控制系统的算法。 #### 数据集特点 - **类别多样性**:涵盖了常见的十种不同类型的金属表面缺陷- **高质量标注**:每张图片都经过精确的人工标注,确保训练模型时能够获得可靠的标签信息。 - **应用场景广泛**:适用于各种机器视觉任务,特别是那些涉及复杂背景下的微小瑕疵识别的任务。 ### 使用方法 为了有效利用此数据集进行研究工作或构建实际应用系统,在获取到原始文件之后通常需要完成以下几个方面的工作: #### 准备环境 安装必要的依赖库来处理图像读取、预处理以及后续可能涉及到的深度学习框架支持。对于 Python 用户来说,可以考虑如下命令来进行基础设置: ```bash pip install numpy opencv-python matplotlib torch torchvision ``` #### 加载并探索数据 通过编写简单的脚本来加载部分样本查看其基本信息,比如尺寸大小、通道数等,并可视化一些实例以便直观理解所面临挑战的程度。 ```python import os from PIL import Image import matplotlib.pyplot as plt def display_sample_images(data_dir, num_samples=5): fig = plt.figure(figsize=(12, 8)) all_files = [os.path.join(root, name) for root, _, files in os.walk(data_dir) for name in files if ".jpg" in name] selected_imgs = all_files[:num_samples] for idx, img_path in enumerate(selected_imgs): ax = fig.add_subplot(1, num_samples, idx + 1) image = Image.open(img_path).convert('RGB') ax.imshow(image) ax.axis('off') display_sample_images('./path_to_gc10_det_dataset') # 替换为实际路径 plt.show() ``` #### 预处理与增强 考虑到真实世界条件下采集到的照片往往存在光照变化大等问题,因此建议实施适当的数据扩增策略以提高泛化能力。这包括但不限于随机裁剪、翻转、旋转等方式。 ```python import albumentations as A from albumentations.pytorch.transforms import ToTensorV2 transform = A.Compose([ A.Resize(height=640, width=640), A.HorizontalFlip(p=0.5), A.VerticalFlip(p=0.5), A.RandomRotate90(), A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ToTensorV2() ]) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值