【深度学习】【语音】LJ Speech Dataset 数据集介绍

The LJ Speech Dataset: An Overview

简介

The LJ Speech Dataset 是一个公共领域的语音数据集,包含13,100个单一发声者朗读非小说书籍片段的短音频剪辑。每个音频剪辑都提供了相应的转录文本。这些音频剪辑的长度从1秒到10秒不等,总时长约为24小时。本文将详细介绍该数据集的内容、文件格式、统计数据及其应用。

数据集概述

数据来源

该数据集的文本摘自1884年至1964年之间出版的7本非小说书籍,所有文本都属于公共领域。音频由LibriVox项目在2016-17年录制,也属于公共领域。LibriVox是一个致力于将公共领域的书籍转录为音频的项目。

数据集内容
  • 总音频片段数: 13,100
  • 总词数: 225,715
  • 总字符数: 1,308,674
  • 总时长: 23小时55分17秒
  • 平均片段时长: 6.57秒
  • 最短片段时长: 1.11秒
  • 最长片段时长: 10.10秒
### Text to Speech 技术实现与工具 #### TTS 技术概述 Text-to-Speech (TTS) 是一种将文本转化为自然语音的技术,广泛应用于语音助手、辅助阅读、教育、娱乐以及客户服务等领域。其核心目标是通过算法生成接近人类发音的声音[^1]。 #### 实现方式 TTS 的实现通常分为两个主要阶段:前端处理和后端合成。 - **前端处理**:负责将输入的文本转换为音素序列或其他中间表示形式。这一步骤涉及分词、语法分析、重音预测等内容[^2]。 - **后端合成**:基于前端生成的数据,利用声学模型生成最终的音频信号。这一过程可能采用传统的波形拼接方法或者现代的神经网络模型如 Tacotron 和 WaveRNN。 #### 开源工具推荐 以下是几个常用的开源 TTS 工具及其特点: 1. **Mozilla TTS** - 基于 Tacotron 2 和 LPCNet 构建,能够生成高质量的人类声音。 - 提供灵活的训练接口,允许开发者自定义数据集进行微调。 2. **ESPnet** - ESPnet 是一个专注于端到端语音处理的框架,涵盖了 ASR(自动语音识别)、TTS 及其他相关领域。 - 支持多种语言,并提供了丰富的预训练模型集合[^2]。 3. **Festvox** - Festvox 是较早的一批开放源码项目之一,适合初学者探索基本概念和技术细节。 - 尽管性能不如最新一代深度学习驱动的方法先进,但它仍然具有很高的教学价值[^2]。 4. **Coqui TTS** - Coqui TTS 是由 Mozilla TTS 衍生出来的独立分支,进一步优化了用户体验并简化部署流程。 - 它内置了一些经过良好调整的基础模型参数配置文件,便于快速启动开发工作流[^2]。 #### 数据集建议 为了训练更贴近实际需求的定制化 TTS 模型,还需要准备相应的标注好质量较高的语料库作为支撑材料: - LJ Speech Dataset: 英语单讲者录音资料集,包含约13小时干净清晰的话语片段。 - CSTR VCTK Corpus: 包含多位不同性别年龄层英国本土口音表演者的多样化样本集合[^2]。 #### Java 平台下的具体实践案例 对于希望在 Android 应用程序或者其他基于 JVM 环境下集成 TTS 功能的朋友来说,可以考虑使用 Google 提供的标准 API 或第三方库完成任务。下面展示如何借助原生 `android.speech.tts.TextToSpeech` 类创建简单的跨平台解决方案示例代码如下所示: ```java import android.speech.tts.TextToSpeech; import java.util.Locale; public class MainActivity extends AppCompatActivity implements TextToSpeech.OnInitListener { private TextToSpeech tts; @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.activity_main); tts = new TextToSpeech(this, this); // 初始化 TTS 引擎实例对象 } public void onInit(int status) { if(status != TextToSpeech.ERROR){ Locale locale = new Locale("zh", "CN"); int result = tts.setLanguage(locale); if(result==TextToSpeech.LANG_MISSING_DATA || result==TextToSpeech.LANG_NOT_SUPPORTED){ Log.e("TTS","该设备不支持指定的语言!"); } else{ String text="你好世界"; tts.speak(text, TextToSpeech.QUEUE_FLUSH,null,"id_001"); } } } @Override protected void onDestroy(){ if(tts!=null){ tts.stop(); tts.shutdown(); } super.onDestroy(); } } ``` 此段脚本展示了怎样初始化一个标准安卓应用内的文字转语音服务组件,并设定普通话为中国地区版本;同时验证是否存在对应方言的支持情况再决定是否继续执行下一步操作逻辑[^3]。 #### Qt Framework 下的应用场景演示 另外,在桌面级图形界面应用程序设计过程中也可以充分利用 Qt framework 自带模块轻松达成相同效果。这里给出一段简单明了的例子用来证明这一点: ```cpp #include <QApplication> #include <QTextToSpeech> int main(int argc, char *argv[]) { QApplication app(argc, argv); QTextToSpeech *tts = new QTextToSpeech(); QStringList engines = QTextToSpeech::availableEngines(); qDebug()<<"Available Engines:"<<engines; QString engineName = engines.isEmpty()?QString():engines.first(); tts->setEngine(engineName); QList<QLocale> locales=tts->availableLocales(); foreach(const QLocale& l ,locales ){ qDebug()<<l.name(); } if(tts->state()==QTextToSpeech::Ready){ tts->say("欢迎来到Qt的世界!"); } delete tts; return app.exec(); } ``` 上述 cpp 文件体现了当用户运行这个小程序之后将会听到一句中文问候语句被朗读出来的情景描述[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值