FFT

任意一个序列可以用一组延迟的单位采样的幅度加权的线性组合表示,也可以表示成与单位采样序列的卷积和。
序列 x(n) 是稳定的,当且仅当存在某一个固定的有限正数 S ,使得S=n=|x(n)|<成立。如果对于 n<0 ,有 x(n)=0 ,那么序列 x(n) 称为是因果性的(或是物理可实现的)。序列 x(n) 能量为序列各抽样值的平方和即 E=n=|x(n)|2
单位冲激函数定义为

δ(tt0)={1,t=t00,tt0

单位冲激函数的性质有:(1) xa(t)δ(tt0)dt=xa(t0) ;(2) δ(tt0)dt=1
ω 为数字域频率, Ω 为模拟域频率, T 为采样周期,fs为采样频率,则 ω=ΩT=Ω/fs 。数字域频率 ω 是模拟域频率 Ω 对采样频率的归一化频率。
一些关于常系数线性差分方程描述的系统的结论:(1)一个差分方程不能唯一确定一个系统;(2)常系数线性差分方程描述的系统不一定是线性移不变的;(2)常系数线性差分方程描述的系统不一性是因果的,也不一定是稳定的系统。
频域函数的乘积对应其时域函数的卷积。

傅里叶变换就是建立以时间为自变量的“信号”与以频率为自变量的“频谱函数”之间的某种变换关系。

离散傅里叶级数(discrete Fourier series,DFS)。周期序列 x(n) 的离散傅里叶级数(DFS)为

x(n)=1Nk=0N1X~(k)ej2πNknX~(k)=n=0N1x~(n)ej2πNkn

WN=ej(2π/N)
则周期序列 x(n) 的离散傅里叶级数(DFS)即为
x(n)=IDFS[X~(k)]=1Nk=0N1X~(k)ej2πNknX~(k)=DFS[x~(n)]=n=0N1x~(n)ej2πNkn

DFS性质:
(1)线性性质:
x~(n) y~(n) 是周期为 N 的两个周期序列,它们DFS的分别为X~(k) Y~(k) ,即
DFS[x~(n)=X~(k)DFS[y~(n)=Y~(k)

则线性组合 ax~(n)+by~(n) 的DFS为
DFS[ax~(n)+by~(n)]=aX~(k)+bY~(k)

式中 a b均常数。
(2)序列的圆周移位
(3)周期卷积
设两个周期序列 x~(n) y~(n) 的周期均为N,它们的DFS分别为 X~(k) Y~(k) ,两者的乘积为
F~(k)=X~(k)Y~(k)


f~(n)=IDFS[F~(k)]=m=0N1x~(m)y~(nm)


f~(n)=IDFS[F~(k)]=m=0N1y~(m)x~(nm)

离散傅里叶变换的性质:

(1)线性性质
(2)共轭对称性
(3) x((n))N 的DFT
(4)序列的循环移位及其DFT
(5)循环卷积
(6)DFT与z变换的关系

X(k)=X(z)|z=WkN

x(n)的N点DFT是x(n)的z变换在单位圆上的N点等间隔抽样,x(n)的DTFT在区间[0,2 π ]的等间隔采样。
信号的频谱就是信号的傅里叶变换。信号的频谱分析就是计算信号的傅里叶变换。

利用循环卷积计算线性卷积

1.有限长序列的情况

线性卷积的公式为
y(n)=x(n)h(n)=m=x(m)h(nm)
循环卷积的公式为
y(n)=x(n)h(n)=N1m=0x(m)h(nm))NRN(n)
一般情况下,循环卷积和线性卷积是不相等的。

2.时宽不定序列的情况

(1)重叠相加法
重叠相加法是将待处理的序列分成长度为 N1 的几个小片段,每一段与有限长的单位冲激响应作卷积,然后再将各段的计算结果重叠相加。
(2)重叠保留法

3.频域采样

与时域采样造成频域的周期延拓类似,频域上的采样同样也造成了时域的周期延拓。
如果x(n)是长度为M的有限长序列,则当 n<m 时,即频率采样间隔不够密时,的周期重复就会出现某些序列值混叠在一起,这样就不可能从中 x~(n) 无失真地恢复出原序列,这就是频率采样中的混叠现象。

2.2 DFT应用中的问题与参数选择

1.混叠现象
连续信号的采样频率 fs 必须大于奈奎斯特频率,即采样频率 fs 至少应等于信号所含有的最高频率 fo 的两倍,即 fs2fo ,实际应用中, fs 常取 3fo4fo
2.泄漏现象
频谱泄漏现象是指信号的频谱经过系统处理后,以前没有频谱的区间出现了频谱,即产生了频谱泄漏。
3.栅栏效应
4.DFT参数选择(频率分辨经与计算长度)
物理频率分辨率是指长度为 L 的信号序列对应的连续谱能够分辨的最小频率,定义为

fp=fsLωp=2πL

计算频率分辨率是指连续谱 X(ejω) 在单位圆上通过 N 点均匀采样后得到的离散谱相邻谱线的距离,其定义为
fc=fsNωc=2πN

序列加零可分为前加零、后加零以及中间加零三种情况。序列后加零的主要影响是平滑了加零前序列的连续谱。

3.快速傅里叶变换

FFT算法可分为按时间抽取算法和按频率抽取算法。
权函数的两个因有特性:
周期性

W(k+N)nN=WknN

对称性
Wk(Nn)N=Wkn)N=(WknN)Wk+N2N=(WknN)

1.按时间抽取的基2FFT算法

2.按频率取的基2FFT算法

2.4 Chirp- z 变换(CZT)

第三章 数字滤波器的设计

根据实现的方式,滤波器分为模拟滤波器和数字滤波器两大类。数字滤波器是通过数字信号进行数学运算处理来达到频域滤波的目的。数学运算通常有两种方法:一种是频域方法,即利用FFT算法对输入信号进行离散傅里叶变换,分析其频谱,然后根据所希望的频率特性对相应的频率分量进行取舍,再利用IFFT算法恢复出所希望的时域信号,这种方法具有较好的频率选择性和灵活性。另一种方法是时域法,这种方法是通过对离散采样数据作卷积运算来达到滤波目的。

FIR数字滤波器的特性

IIR数字滤波器的特性

IIR滤波器的稳定性与系统函数的极点相关,而系统函数的零点的位置决定了滤波器的性能,零点的位置与滤波器的稳定性无关。IIR滤波器中有一类滤波器,它在整个频率范围内的幅频特性是一个定值,即 |H(ejω)| 为一常数,这类滤波器称为全通滤波器。全通滤波器在数字网络中不改变信号的振幅特性,但它可用来逼近所希望的相位特性。
IIR滤波器的相延迟为

τp(ω)=θ(ω)ω=12jωln[H(ejω)H(ejω)]

IIR滤波器的群延迟为
τg(ω)=dθ(ω)ω=ddω{12jωln[H(ejω)H(ejω)]}=Re{zddz[lnH(z)]}z=ejω

滤波器的主要技术指标有滤波器的阶数 N 、通带的截止频率ωc及最大衰减 α1 、阻带截止频率 ωr 及最小衰减 ω2

FIR数字滤波器的设计方法

FIR数字滤波器的设计方法主要有傅里叶展开法、窗函数法和频率采样法等。
傅里叶展开法
方法思想:FIR滤波器的相位特性与冲激响应 h(n) 的对称性和持续时间 N 有关,当h(n) N 给定后,滤波器的相伴特性就唯一地被确定了;而冲激响应的特性可用一个傅里叶级数来表示。
窗函数法
矩形窗

ωR={1,0nN10,n

其频率特性为

WR(ejω=ejωN12sin(\omegaN/2)sin(ω/2)

三角窗

升余弦窗

布莱克曼窗

凯塞窗

IIR数字滤波器的设计与实现

模拟滤波器
巴特沃斯滤波器
巴特沃斯滤波器的特点是具有通带内最大平坦的幅度特性,而且随着频率升高呈单调递减。滤波器的幅度平方特性函数 A(Ω)

A(Ω2)=|Ha(jΩ)|2=11+(ΩΩc)2N

式中, N 为整数,称为滤波器的阶数,Ωc为截止频率或 3db 带宽,即当 Ω=Ωc 时,
|Ha(jΩ)|2=12

通带内纹波允许最大衰减
δ1=20lg(Ha(jΩ)Ha(j0))=3dB

切比雪夫滤波器
切比雪夫I滤波器的特点是通带内具有等幅波动的特性,而在阻带内呈单调递减;后者特征恰恰相反。
椭圆滤波器
椭圆滤波器在通带和阻带内都有等波动的幅度特性。它的幅度平方特性为
A(Ω2)=|Ha(jΩ)|2=11+ε2J2N(Ω)

式中, JN(Ω) N 阶雅可比椭圆函数。
1.冲激响应不变法

2.双线性变换设计法
双线性变换的基本关系为:

z=2T+s2Ts

预畸变公式为
Ω=2Ttan(ω2)

3.匹配 z 变换法
直接将s平面的极点和零点映射到 z 平面的极点和零点,即z=esT T 其中是采样周期。
4.频率变换法
冲激响应不变法和双线性变换法只能设计出低通滤波器。频率变换法是先根据冲激响应不变换法或双线性变换法设计出低通滤波器,然后通过有理变换,得到低通、高通、带通和带阻滤波器。

滤波器类型变换函数公式相应的设计公式
低通 z1=p1α1αp1 α=sin(θcωc2)sin(θc+ωc2)
高通 z1=p1+α1+αp1 α=cos(θcωc2)cos(θc+ωc2)
带通
带阻

其中, ωc 为要求 的截止泫, ωc1 ωc2 为要求的上下截止频率。
信号的频谱就是信号的傅里叶变换。信号的频谱分析就是计算信号的傅里叶变换。

离散随机信号的统计分析基础

功率谱密度是偶函数,且必是非负的实数。
线性时不变系统输出输入信号的互相关函数是系统的冲激响应和输入信号的自相关序列的卷积。

随机信号的功率谱估计

描述一个估计量概率函数集中程度的一种方法是使用置信区间,另一种方法是最大似然估计。

φxx(m)=1Nn=0N|m|1x(n)x(n+m)=N|m|Nφ^xx(m)

周期图不是功率谱的一致估计。

平均周期图法

1.巴特利特平均周期图法
2.窗函数法
它的原理如下:选择合适的窗函数与周期图卷积而使周期平滑,故称为窗函数法,即

P^xx(ω)=12πππIN(θ)W(ej(ωθ)dθ


P^xx(ω)=m=(M1)M1φ^xx(m)ω(m)ejωm

式中,窗函数序列 ω(m) 的长度为 2M1 的有限宽窗序列。
韦尔奇(Welch)法。其原理是:选择适当的窗函数 ω(m) ,并在周期图计算之前直接加进去。先将 x(n) 分成 K 段,每段有M个样本( N=KM ),这样得到的第 i 段的周期图为
I(i)M(ω)=1MUn=0N1xi(n)ω(n)ejωn1iK

式中 U=1MN1n=0ω2(n) 为归一化因子。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值