目录
4.2.1Data Vectorization classes
4.2.2The MLP Model:SurnameClassifier
4.3.1Data Vectorization classes
4.3.2The CNN Model:SurnameClassifier
一、什么是姓氏分类
姓氏数据集,它收集了来自18个不同国家的10,000个姓氏,这些姓氏是作者从互联网上不同的姓名来源收集的。该数据集具有一些使其有趣的属性。第一个性质是它是相当不平衡的。排名前三的课程占数据的60%以上:27%是英语,21%是俄语,14%是阿拉伯语。剩下的15个民族的频率也在下降——这也是语言特有的特性。第二个特点是,在国籍和姓氏正字法(拼写)之间有一种有效和直观的关系。有些拼写变体与原籍国联系非常紧密(比如“O ‘Neill”、“Antonopoulos”、“Nagasawa”或“Zhu”)。本文中提到的姓氏分类是指将姓氏分类至其原有国籍类别中。
二、前馈神经网络介绍
2.1多层感知器(MLP)介绍
2.1.1感知机
多层感知机的基础是单层感知机。单层感知机是一个线性分类器,其结构如下所示:
其中,y是输出,g是激活函数,wi为输入xi的权重。w控制着分类线的方向,b控制着线的偏移
感知机包括一个输入层和一个输出层。一般来说,感知机有多个输入和一个输出。其是一种简单的神经网络,但没有隐藏层。感知机是一种单层前馈神经网络,它接收输入特征,并根据权重和偏置进行线性加权求和,输出一个二分类结果。感知机是神经网络理论的一个早期模型,是神经网络发展的基础之一。感知机使用激活函数(如阶跃函数)来进行二分类,这是神经网络的基本思想。感知机根据损失函数使用梯度下降法来调整权重和偏置,这是神经网络常用的优化方法。(损失函数和神经网络优化算法有很多,作者在之后会发布相关文章到主页。)
2.1.2多层感知机
多个单层感知机结构组合起来,便形成了多层感知器,其结构如下所示:
从结构上看,多层感知器是一种全连接神经网络(从第一层开始,除最后一层,每一层神经元都有后一层所有神经元之间相连接,并且层内神经元互不相连)。从数据流动方向来看,多层感知器是前馈神经网络(从第二层神经元开始,每一层神经元都可以接收前一层的输出,并输出给下一层,信号从输入层到输出层单向传播)。
最简单的MLP,如下图所示,由三个表示阶段和两个线性层组成。第一阶段是输入向量。给定输入向量,第一个线性层计算一个隐藏向量——表示的第二阶段。使用这个隐藏的向量,第二个线性层计算一个输出向量。
多层感知器是由多个单层感知机组成的,可以做线性分类之外的复杂分类,比如下面的XOR例子,其中左侧的图是单层感知机的分类结果,右侧的图是多层感知器的分类结果(目的是将星星与圆圈分开,黑色填充的代表分类错误,没有填充代表分类正确),可以明显看出来多层感知器分类效果好。
虽然在图中显示MLP有两个决策边界,这是它的优点,但它实际上只是一个决策边界!决策边界就是这样出现的,因为中间表示法改变了空间,使一个超平面同时出现在这两个位置上。
2.2卷积神经网络(CNN)
2.2.1卷积层
2.2.1.1卷积核
CNN中的卷积核是一个小的矩阵,它可以在输入数据上滑动,从而提取不同特征。卷积核通过在输入数据上进行卷积操作来提取特征,这可以看作是一种过滤器,它可以捕获输入数据中的不同特征。卷积核的大小通常是一个正方形的矩阵,它的大小可以根据网络的架构和任务的复杂程度来确定。在训练过程中,卷积核的权重会被不断调整,以便最大程度地提取出输入数据中的有用信息。通过组合多个卷积核,CNN可以同时学习不同特征的表示,并最终使网络具有更好的特征提取能力。
卷积核不仅具有宽和高,还具有深度,常写成如下形式:宽度x高度x深度。
卷积核参数不仅包括核中存储的权值,还包括偏置值。
2.2.1.2卷积步长
卷积神经网络中,卷积核可以按照指定的间隔进行卷积操作,这个间隔就是卷积步长。不同的卷积步长在相同的卷积核和词汇表进行卷积的结果中影响着卷积结果大小。
2.2.1.3卷积运算维数以及卷积操作
卷积可以是一维、二维、三维的。作者第一次接触到的卷积是一维卷积,接触地点是令人痛苦的数字信号处理教室。一维卷积是数字序列之间的卷积。可以想象成一个序列不动,另一个序列一位一位地移动,每次移动输出的实数是两个序列重叠位置的乘积加和。
二维操作就是将上述过程拓展为二维图像,不仅有宽度,还新加了高度。
三维卷积操作可用下图进行表示:
其计算过程如下:
数学公式:
w为卷积核的权值,b为卷积核的偏置。卷积操作后得到特征相应图。特征相应图中每个位置上的值反映了词汇表上对应位置是否存在卷积核所记录的基元结构信息。
2.2.1.4通道
非正式地,通道(channel)是指沿输入中的每个点的特征维度。例如,在图像中,对应于RGB组件的图像中的每个像素有三个通道。在使用卷积时,文本数据也可以采用类似的概念。从概念上讲,如果文本文档中的“像素”是单词,那么通道的数量就是词汇表的大小。如果我们更细粒度地考虑字符的卷积,通道的数量就是字符集的大小(在本例中刚好是词汇表)。
2.2.1.5核大小
核矩阵的宽度称为核大小。例如上图中核大小就是2。
2.2.1.6边界填充
卷积神经网络中最常用的填充方式是零值填充,边界填充的作用是保持输入、输出尺寸的一致。
特征图的尺寸计算如下:
2.2.2激活层
在CNN中,激活层是指在卷积层之后的一层,用于引入非线性特征并增强网络的表达能力。激活函数是激活层的核心组件,其作用是在神经网络中引入非线性因素,从而使神经网络能够学习复杂的非线性模式。常用的激活函数包括sigmoid函数、ReLU函数、tanh函数等。激活函数会对每个神经元的输出进行激活处理,生成一个新的特征图,这样可以保持网络的非线性特性并学习更加抽象的特征。
2.2.3池化层
池化层用于对特征响应图进行池化操作。池化操作就是在特征响应图某个区域指定一个值来代表整个区域。池化对每一个特征响应图独立进行,降低特征响应图组中每个特征响应图的宽度和高度,减少后续卷积层的参数的数量,降低计算资源耗费,进而控制过拟合。常见的池化操作有最大池化(使用区域内最大值来代表这个区域)和平均池化(使用区域内所有值的均值作为代表)。
下图是一个池化操作示例:
2.2.4全连接层
作者在上面提到了多层感知器是一个全连接神经网络。在CNN中,全连接层是一种常见的神经网络层,它的每个神经元都与上一层中的所有神经元相连接,也称为密集连接层。全连接层通常位于卷积层和输出层之间,用于将卷积层提取到的特征映射转换为最终的输出。
全连接层的作用是对卷积层提取到的特征进行非线性变换和组合,以提高模型的表达能力和精度。通过全连接层,网络可以学习到不同特征之间的相互关系,从而实现更加复杂的模式识别和分类任务。
在训练过程中,全连接层的参数需要进行学习和调整,以最小化损失函数并优化模型的性能。通常,全连接层会采用激活函数(如ReLU、Sigmoid或Tanh)来引入非线性,以增加网络的表达能力和学习能力。
三、利用前馈神经网络实现姓氏分类
3.1任务目的
该实验的主要目的是:训练出一个前馈神经网络模型,让其能够实现姓氏分类。
3.2开发环境
本实验使用的软件为python3.6.7
并且为了实现本文目标,需要使用如下语句导入一些Python库:
from argparse import Namespace
from collections import Counter
import json
import os
import string
import collections
import numpy as np
import pandas as pd
import re
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from tqdm import tqdm_notebook
import matplotlib.pyplot as plt
seed = 1337
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
四、具体代码实现
4.1数据集构建
在第一部分介绍姓氏数据集时,作者提到过该数据集的两个性质:第一个性质是它是相当不平衡的。第二个特点是,在国籍和姓氏正字法(拼写)之间有一种有效和直观的关系。
为了创建最终的数据集,我们执行了几个数据集修改操作。第一个目的是减少这种不平衡——原始数据集中70%以上是俄文,这可能是由于抽样偏差或俄文姓氏的增多。为此,我们通过选择标记为俄语的姓氏的随机子集对这个过度代表的类进行子样本。接下来,我们根据国籍对数据集进行分组,并将数据集分为三个部分:70%到训练数据集,15%到验证数据集,最后15%到测试数据集,以便跨这些部分的类标签分布具有可比性。
args = Namespace(
raw_dataset_csv="data/surnames/surnames.csv",
train_proportion=0.7,
val_proportion=0.15,
test_proportion=0.15,
output_munged_csv="data/surnames/surnames_with_splits.csv",
seed=1337
)
# Read raw data
surnames = pd.read_csv(args.raw_dataset_csv, header=0)
print(surnames.head())
# Splitting train by nationality
# Create dict
by_nationality = collections.defaultdict(list)
for _, row in surnames.iterrows():
by_nationality[row.nationality].append(row.to_dict())
# Create split data
final_list = []
np.random.seed(args.seed)
for _, item_list in sorted(by_nationality.items()):
np.random.shuffle(item_list)
n = len(item_list)
n_train = int(args.train_proportion*n)
n_val = int(args.val_proportion*n)
n_test = int(args.test_proportion*n)
# Give data point a split attribute
for item in item_list[:n_train]:
item['split'] = 'train'
for item in item_list[n_train:n_train+n_val]:
item['split'] = 'val'
for item in item_list[n_train+n_val:]:
item['split'] = 'test'
# Add to final list
final_list.extend(item_list)
# Write split data to file
final_surnames = pd.DataFrame(final_list)
print(final_surnames.split.value_counts())
print(final_surnames.head())
# Write munged data to CSV
final_surnames.to_csv(args.output_munged_csv, index=False)
运行结果如下:
4.2MLP模型构建
4.2.1Data Vectorization classes
4.2.1.1The Vocabulary
词汇表,用于将字符映射到整数索引。
class Vocabulary(object):
"""Class to process text and extract vocabulary for mapping"""
def __init__(self, token_to_idx=None, add_unk=True, unk_token="<UNK>"):
"""
Args:
token_to_idx (dict): a pre-existing map of tokens to indices
add_unk (bool): a flag that indicates whether to add the UNK token
unk_token (str): the UNK token to add into the Vocabulary
"""
if token_to_idx is None:
token_to_idx = {}
self._token_to_idx = token_to_idx
self._idx_to_token = {idx: token
for token, idx in self._token_to_idx.items()}
self._add_unk = add_unk
self._unk_token = unk_token
self.unk_index = -1
if add_unk:
self.unk_index = self.add_token(unk_token)
def to_serializable(self):
""" returns a dictionary that can be serialized """
return {'token_to_idx': self._token_to_idx,
'add_unk': self._add_unk,
'unk_token': self._unk_token}
@classmethod
def from_serializable(cls, contents):
""" instantiates the Vocabulary from a serialized dictionary """
return cls(**contents)
def add_token(self, token):
"""Update mapping dicts based on the token.
Args:
token (str): the item to add into the Vocabulary
Returns:
index (int): the integer corresponding to the token
"""
try:
index = self._token_to_idx[token]
except KeyError:
index = len(self._token_to_idx)
self._token_to_idx[token] = index
self._idx_to_token[index] = token
return index
def add_many(self, tokens):
"""Add a list of tokens into the Vocabulary
Args:
tokens (list): a list of string tokens
Returns:
indices (list): a list of indices corresponding to the tokens
"""
return [self.add_token(token) for token in tokens]
def lookup_token(self, token):
"""Retrieve the index associated with the token
or the UNK index if token isn't present.
Args:
token (str): the token to look up
Returns:
index (int): the index corresponding to the token
Notes:
`unk_index` needs to be >=0 (having been added into the Vocabulary)
for the UNK functionality
"""
if self.unk_index >= 0:
return self._token_to_idx.get(token, self.unk_index)
else:
return self._token_to_idx[token]
def lookup_index(self, index):
"""Return the token associated with the index
Args:
index (int): the index to look up
Returns:
token (str): the token corresponding to the index
Raises:
KeyError: if the index is not in the Vocabulary
"""
if index not in self._idx_to_token:
raise KeyError("the index (%d) is not in the Vocabulary" % index)
return self._idx_to_token[index]
def __str__(self):
return "<Vocabulary(size=%d)>" % len(self)
def __len__(self):
return len(self._token_to_idx)
4.2.1.2The Vectorizer
应用词汇表并将姓氏转换为向量。
class SurnameVectorizer(object):
""" The Vectorizer which coordinates the Vocabularies and puts them to use"""
def __init__(self, surname_vocab, nationality_vocab):
"""
Args:
surname_vocab (Vocabulary): maps characters to integers
nationality_vocab (Vocabulary): maps nationalities to integers
"""
self.surname_vocab = surname_vocab
self.nationality_vocab = nationality_vocab
def vectorize(self, surname):
"""
Args:
surname (str): the surname
Returns:
one_hot (np.ndarray): a collapsed one-hot encoding
"""
vocab = self.surname_vocab
one_hot = np.zeros(len(vocab), dtype=np.float32)
for token in surname:
one_hot[vocab.lookup_token(token)] = 1
return one_hot
@classmethod
def from_dataframe(cls, surname_df):
"""Instantiate the vectorizer from the dataset dataframe
Args:
surname_df (pandas.DataFrame): the surnames dataset
Returns:
an instance of the SurnameVectorizer
"""
surname_vocab = Vocabulary(unk_token="@")
nationality_vocab = Vocabulary(add_unk=False)
for index, row in surname_df.iterrows():
for letter in row.surname:
surname_vocab.add_token(letter)
nationality_vocab.add_token(row.nationality)
return cls(surname_vocab, nationality_vocab)
@classmethod
def from_serializable(cls, contents):
surname_vocab = Vocabulary.from_serializable(contents['surname_vocab'])
nationality_vocab = Vocabulary.from_serializable(contents['nationality_vocab'])
return cls(surname_vocab=surname_vocab, nationality_vocab=nationality_vocab)
def to_serializable(self):
return {'surname_vocab': self.surname_vocab.to_serializable(),
'nationality_vocab': self.nationality_vocab.to_serializable()}
4.2.1.3The Dataset
class SurnameDataset(Dataset):
def __init__(self, surname_df, vectorizer):
"""
Args:
surname_df (pandas.DataFrame): the dataset
vectorizer (SurnameVectorizer): vectorizer instatiated from dataset
"""
self.surname_df = surname_df
self._vectorizer = vectorizer
self.train_df = self.surname_df[self.surname_df.split=='train']
self.train_size = len(self.train_df)
self.val_df = self.surname_df[self.surname_df.split=='val']
self.validation_size = len(self.val_df)
self.test_df = self.surname_df[self.surname_df.split=='test']
self.test_size = len(self.test_df)
self._lookup_dict = {'train': (self.train_df, self.train_size),
'val': (self.val_df, self.validation_size),
'test': (self.test_df, self.test_size)}
self.set_split('train')
# Class weights
class_counts = surname_df.nationality.value_counts().to_dict()
def sort_key(item):
return self._vectorizer.nationality_vocab.lookup_token(item[0])
sorted_counts = sorted(class_counts.items(), key=sort_key)
frequencies = [count for _, count in sorted_counts]
self.class_weights = 1.0 / torch.tensor(frequencies, dtype=torch.float32)
@classmethod
def load_dataset_and_make_vectorizer(cls, surname_csv):
"""Load dataset and make a new vectorizer from scratch
Args:
surname_csv (str): location of the dataset
Returns:
an instance of SurnameDataset
"""
surname_df = pd.read_csv(surname_csv)
train_surname_df = surname_df[surname_df.split=='train']
return cls(surname_df, SurnameVectorizer.from_dataframe(train_surname_df))
@classmethod
def load_dataset_and_load_vectorizer(cls, surname_csv, vectorizer_filepath):
"""Load dataset and the corresponding vectorizer.
Used in the case in the vectorizer has been cached for re-use
Args:
surname_csv (str): location of the dataset
vectorizer_filepath (str): location of the saved vectorizer
Returns:
an instance of SurnameDataset
"""
surname_df = pd.read_csv(surname_csv)
vectorizer = cls.load_vectorizer_only(vectorizer_filepath)
return cls(surname_df, vectorizer)
@staticmethod
def load_vectorizer_only(vectorizer_filepath):
"""a static method for loading the vectorizer from file
Args:
vectorizer_filepath (str): the location of the serialized vectorizer
Returns:
an instance of SurnameVectorizer
"""
with open(vectorizer_filepath) as fp:
return SurnameVectorizer.from_serializable(json.load(fp))
def save_vectorizer(self, vectorizer_filepath):
"""saves the vectorizer to disk using json
Args:
vectorizer_filepath (str): the location to save the vectorizer
"""
with open(vectorizer_filepath, "w") as fp:
json.dump(self._vectorizer.to_serializable(), fp)
def get_vectorizer(self):
""" returns the vectorizer """
return self._vectorizer
def set_split(self, split="train"):
""" selects the splits in the dataset using a column in the dataframe """
self._target_split = split
self._target_df, self._target_size = self._lookup_dict[split]
def __len__(self):
return self._target_size
def __getitem__(self, index):
"""the primary entry point method for PyTorch datasets
Args:
index (int): the index to the data point
Returns:
a dictionary holding the data point's:
features (x_surname)
label (y_nationality)
"""
row = self._target_df.iloc[index]
surname_vector = \
self._vectorizer.vectorize(row.surname)
nationality_index = \
self._vectorizer.nationality_vocab.lookup_token(row.nationality)
return {'x_surname': surname_vector,
'y_nationality': nationality_index}
def get_num_batches(self, batch_size):
"""Given a batch size, return the number of batches in the dataset
Args:
batch_size (int)
Returns:
number of batches in the dataset
"""
return len(self) // batch_size
def generate_batches(dataset, batch_size, shuffle=True,
drop_last=True, device="cpu"):
"""
A generator function which wraps the PyTorch DataLoader. It will
ensure each tensor is on the write device location.
"""
dataloader = DataLoader(dataset=dataset, batch_size=batch_size,
shuffle=shuffle, drop_last=drop_last)
for data_dict in dataloader:
out_data_dict = {}
for name, tensor in data_dict.items():
out_data_dict[name] = data_dict[name].to(device)
yield out_data_dict
4.2.2The MLP Model:SurnameClassifier
class SurnameClassifier(nn.Module):
""" A 2-layer Multilayer Perceptron for classifying surnames """
def __init__(self, input_dim, hidden_dim, output_dim):
"""
Args:
input_dim (int): the size of the input vectors
hidden_dim (int): the output size of the first Linear layer
output_dim (int): the output size of the second Linear layer
"""
super(SurnameClassifier, self).__init__()
self.fc1 = nn.Linear(input_dim, hidden_dim)
self.fc2 = nn.Linear(hidden_dim, output_dim)
def forward(self, x_in, apply_softmax=False):
"""The forward pass of the classifier
Args:
x_in (torch.Tensor): an input data tensor.
x_in.shape should be (batch, input_dim)
apply_softmax (bool): a flag for the softmax activation
should be false if used with the Cross Entropy losses
Returns:
the resulting tensor. tensor.shape should be (batch, output_dim)
"""
intermediate_vector = F.relu(self.fc1(x_in))
prediction_vector = self.fc2(intermediate_vector)
if apply_softmax:
prediction_vector = F.softmax(prediction_vector, dim=1)
return prediction_vector
4.3CNN模型构建
4.3.1Data Vectorization classes
4.3.1.1The Vocabulary
同4.2.1.1
4.3.1.2The Vectorizer
class SurnameVectorizer(object):
""" The Vectorizer which coordinates the Vocabularies and puts them to use"""
def __init__(self, surname_vocab, nationality_vocab, max_surname_length):
"""
Args:
surname_vocab (Vocabulary): maps characters to integers
nationality_vocab (Vocabulary): maps nationalities to integers
max_surname_length (int): the length of the longest surname
"""
self.surname_vocab = surname_vocab
self.nationality_vocab = nationality_vocab
self._max_surname_length = max_surname_length
def vectorize(self, surname):
"""
Args:
surname (str): the surname
Returns:
one_hot_matrix (np.ndarray): a matrix of one-hot vectors
"""
one_hot_matrix_size = (len(self.surname_vocab), self._max_surname_length)
one_hot_matrix = np.zeros(one_hot_matrix_size, dtype=np.float32)
for position_index, character in enumerate(surname):
character_index = self.surname_vocab.lookup_token(character)
one_hot_matrix[character_index][position_index] = 1
return one_hot_matrix
@classmethod
def from_dataframe(cls, surname_df):
"""Instantiate the vectorizer from the dataset dataframe
Args:
surname_df (pandas.DataFrame): the surnames dataset
Returns:
an instance of the SurnameVectorizer
"""
surname_vocab = Vocabulary(unk_token="@")
nationality_vocab = Vocabulary(add_unk=False)
max_surname_length = 0
for index, row in surname_df.iterrows():
max_surname_length = max(max_surname_length, len(row.surname))
for letter in row.surname:
surname_vocab.add_token(letter)
nationality_vocab.add_token(row.nationality)
return cls(surname_vocab, nationality_vocab, max_surname_length)
@classmethod
def from_serializable(cls, contents):
surname_vocab = Vocabulary.from_serializable(contents['surname_vocab'])
nationality_vocab = Vocabulary.from_serializable(contents['nationality_vocab'])
return cls(surname_vocab=surname_vocab, nationality_vocab=nationality_vocab,
max_surname_length=contents['max_surname_length'])
def to_serializable(self):
return {'surname_vocab': self.surname_vocab.to_serializable(),
'nationality_vocab': self.nationality_vocab.to_serializable(),
'max_surname_length': self._max_surname_length}
4.3.1.3The Dataset
和4.2.1.2中不同的是SurnameDataset.getitem()函数。
class SurnameDataset(Dataset):
def __init__(self, surname_df, vectorizer):
"""
Args:
name_df (pandas.DataFrame): the dataset
vectorizer (SurnameVectorizer): vectorizer instatiated from dataset
"""
self.surname_df = surname_df
self._vectorizer = vectorizer
self.train_df = self.surname_df[self.surname_df.split=='train']
self.train_size = len(self.train_df)
self.val_df = self.surname_df[self.surname_df.split=='val']
self.validation_size = len(self.val_df)
self.test_df = self.surname_df[self.surname_df.split=='test']
self.test_size = len(self.test_df)
self._lookup_dict = {'train': (self.train_df, self.train_size),
'val': (self.val_df, self.validation_size),
'test': (self.test_df, self.test_size)}
self.set_split('train')
# Class weights
class_counts = surname_df.nationality.value_counts().to_dict()
def sort_key(item):
return self._vectorizer.nationality_vocab.lookup_token(item[0])
sorted_counts = sorted(class_counts.items(), key=sort_key)
frequencies = [count for _, count in sorted_counts]
self.class_weights = 1.0 / torch.tensor(frequencies, dtype=torch.float32)
@classmethod
def load_dataset_and_make_vectorizer(cls, surname_csv):
"""Load dataset and make a new vectorizer from scratch
Args:
surname_csv (str): location of the dataset
Returns:
an instance of SurnameDataset
"""
surname_df = pd.read_csv(surname_csv)
train_surname_df = surname_df[surname_df.split=='train']
return cls(surname_df, SurnameVectorizer.from_dataframe(train_surname_df))
@classmethod
def load_dataset_and_load_vectorizer(cls, surname_csv, vectorizer_filepath):
"""Load dataset and the corresponding vectorizer.
Used in the case in the vectorizer has been cached for re-use
Args:
surname_csv (str): location of the dataset
vectorizer_filepath (str): location of the saved vectorizer
Returns:
an instance of SurnameDataset
"""
surname_df = pd.read_csv(surname_csv)
vectorizer = cls.load_vectorizer_only(vectorizer_filepath)
return cls(surname_df, vectorizer)
@staticmethod
def load_vectorizer_only(vectorizer_filepath):
"""a static method for loading the vectorizer from file
Args:
vectorizer_filepath (str): the location of the serialized vectorizer
Returns:
an instance of SurnameDataset
"""
with open(vectorizer_filepath) as fp:
return SurnameVectorizer.from_serializable(json.load(fp))
def save_vectorizer(self, vectorizer_filepath):
"""saves the vectorizer to disk using json
Args:
vectorizer_filepath (str): the location to save the vectorizer
"""
with open(vectorizer_filepath, "w") as fp:
json.dump(self._vectorizer.to_serializable(), fp)
def get_vectorizer(self):
""" returns the vectorizer """
return self._vectorizer
def set_split(self, split="train"):
""" selects the splits in the dataset using a column in the dataframe """
self._target_split = split
self._target_df, self._target_size = self._lookup_dict[split]
def __len__(self):
return self._target_size
def __getitem__(self, index):
"""the primary entry point method for PyTorch datasets
Args:
index (int): the index to the data point
Returns:
a dictionary holding the data point's features (x_data) and label (y_target)
"""
row = self._target_df.iloc[index]
surname_matrix = \
self._vectorizer.vectorize(row.surname)
nationality_index = \
self._vectorizer.nationality_vocab.lookup_token(row.nationality)
return {'x_surname': surname_matrix,
'y_nationality': nationality_index}
def get_num_batches(self, batch_size):
"""Given a batch size, return the number of batches in the dataset
Args:
batch_size (int)
Returns:
number of batches in the dataset
"""
return len(self) // batch_size
def generate_batches(dataset, batch_size, shuffle=True,
drop_last=True, device="cpu"):
"""
A generator function which wraps the PyTorch DataLoader. It will
ensure each tensor is on the write device location.
"""
dataloader = DataLoader(dataset=dataset, batch_size=batch_size,
shuffle=shuffle, drop_last=drop_last)
for data_dict in dataloader:
out_data_dict = {}
for name, tensor in data_dict.items():
out_data_dict[name] = data_dict[name].to(device)
yield out_data_dict
4.3.2The CNN Model:SurnameClassifier
import torch.nn as nn
import torch.nn.functional as F
class SurnameClassifier(nn.Module):
def __init__(self, initial_num_channels, num_classes, num_channels):
"""
Args:
initial_num_channels (int): size of the incoming feature vector
num_classes (int): size of the output prediction vector
num_channels (int): constant channel size to use throughout network
"""
super(SurnameClassifier, self).__init__()
self.convnet = nn.Sequential(
nn.Conv1d(in_channels=initial_num_channels,
out_channels=num_channels, kernel_size=3),
nn.ELU(),
nn.Conv1d(in_channels=num_channels, out_channels=num_channels,
kernel_size=3, stride=2),
nn.ELU(),
nn.Conv1d(in_channels=num_channels, out_channels=num_channels,
kernel_size=3, stride=2),
nn.ELU(),
nn.Conv1d(in_channels=num_channels, out_channels=num_channels,
kernel_size=3),
nn.ELU()
)
self.fc = nn.Linear(num_channels, num_classes)
def forward(self, x_surname, apply_softmax=False):
"""The forward pass of the classifier
Args:
x_surname (torch.Tensor): an input data tensor.
x_surname.shape should be (batch, initial_num_channels, max_surname_length)
apply_softmax (bool): a flag for the softmax activation
should be false if used with the Cross Entropy losses
Returns:
the resulting tensor. tensor.shape should be (batch, num_classes)
"""
features = self.convnet(x_surname).squeeze(dim=2)
prediction_vector = self.fc(features)
if apply_softmax:
prediction_vector = F.softmax(prediction_vector, dim=1)
return prediction_vector
4.4训练模型
def make_train_state(args): ##初始化训练状态
return {'stop_early': False,
'early_stopping_step': 0,
'early_stopping_best_val': 1e8,
'learning_rate': args.learning_rate,
'epoch_index': 0,
'train_loss': [],
'train_acc': [],
'val_loss': [],
'val_acc': [],
'test_loss': -1,
'test_acc': -1,
'model_filename': args.model_state_file}
def update_train_state(args, model, train_state): ##更新训练状态
"""Handle the training state updates.
Components:
- Early Stopping: Prevent overfitting.
- Model Checkpoint: Model is saved if the model is better
:param args: main arguments
:param model: model to train
:param train_state: a dictionary representing the training state values
:returns:
a new train_state
"""
# Save one model at least
if train_state['epoch_index'] == 0:
torch.save(model.state_dict(), train_state['model_filename'])
train_state['stop_early'] = False
# Save model if performance improved
elif train_state['epoch_index'] >= 1:
loss_tm1, loss_t = train_state['val_loss'][-2:]
# If loss worsened
if loss_t >= train_state['early_stopping_best_val']:
# Update step
train_state['early_stopping_step'] += 1
# Loss decreased
else:
# Save the best model
if loss_t < train_state['early_stopping_best_val']:
torch.save(model.state_dict(), train_state['model_filename'])
# Reset early stopping step
train_state['early_stopping_step'] = 0
# Stop early ?
train_state['stop_early'] = \
train_state['early_stopping_step'] >= args.early_stopping_criteria
return train_state
def compute_accuracy(y_pred, y_target): ##计算准确率
y_pred_indices = y_pred.max(dim=1)[1]
n_correct = torch.eq(y_pred_indices, y_target).sum().item()
return n_correct / len(y_pred_indices) * 100
args = Namespace(
# Data and Path information
surname_csv="surnames_with_splits.csv",
vectorizer_file="vectorizer.json",
model_state_file="model.pth",
save_dir="model_storage/ch4/cnn",
# Model hyper parameters
hidden_dim=100,
num_channels=256,
# Training hyper parameters
seed=1337,
learning_rate=0.001,
batch_size=128,
num_epochs=100,
early_stopping_criteria=5,
dropout_p=0.1,
# Runtime options
cuda=False,
reload_from_files=False,
expand_filepaths_to_save_dir=True,
catch_keyboard_interrupt=True
)
if args.expand_filepaths_to_save_dir:
args.vectorizer_file = os.path.join(args.save_dir,
args.vectorizer_file)
args.model_state_file = os.path.join(args.save_dir,
args.model_state_file)
print("Expanded filepaths: ")
print("\t{}".format(args.vectorizer_file))
print("\t{}".format(args.model_state_file))
# Check CUDA
if not torch.cuda.is_available():
args.cuda = False
args.device = torch.device("cuda" if args.cuda else "cpu")
print("Using CUDA: {}".format(args.cuda))
def set_seed_everywhere(seed, cuda):
np.random.seed(seed)
torch.manual_seed(seed)
if cuda:
torch.cuda.manual_seed_all(seed)
def handle_dirs(dirpath):
if not os.path.exists(dirpath):
os.makedirs(dirpath)
# Set seed for reproducibility
set_seed_everywhere(args.seed, args.cuda)
# handle dirs
handle_dirs(args.save_dir)
if args.reload_from_files:
# training from a checkpoint
dataset = SurnameDataset.load_dataset_and_load_vectorizer(args.surname_csv,
args.vectorizer_file)
else:
# create dataset and vectorizer
dataset = SurnameDataset.load_dataset_and_make_vectorizer(args.surname_csv)
dataset.save_vectorizer(args.vectorizer_file)
vectorizer = dataset.get_vectorizer()
classifier = SurnameClassifier(initial_num_channels=len(vectorizer.surname_vocab),
num_classes=len(vectorizer.nationality_vocab),
num_channels=args.num_channels)
classifer = classifier.to(args.device)
dataset.class_weights = dataset.class_weights.to(args.device)
loss_func = nn.CrossEntropyLoss(weight=dataset.class_weights)
optimizer = optim.Adam(classifier.parameters(), lr=args.learning_rate)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer=optimizer,
mode='min', factor=0.5,
patience=1)
train_state = make_train_state(args)
epoch_bar = tqdm_notebook(desc='training routine',
total=args.num_epochs,
position=0)
dataset.set_split('train')
train_bar = tqdm_notebook(desc='split=train',
total=dataset.get_num_batches(args.batch_size),
position=1,
leave=True)
dataset.set_split('val')
val_bar = tqdm_notebook(desc='split=val',
total=dataset.get_num_batches(args.batch_size),
position=1,
leave=True)
try:
for epoch_index in range(args.num_epochs):
train_state['epoch_index'] = epoch_index
# Iterate over training dataset
# setup: batch generator, set loss and acc to 0, set train mode on
dataset.set_split('train')
batch_generator = generate_batches(dataset,
batch_size=args.batch_size,
device=args.device)
running_loss = 0.0
running_acc = 0.0
classifier.train()
for batch_index, batch_dict in enumerate(batch_generator):
# the training routine is these 5 steps:
# --------------------------------------
# step 1. zero the gradients
optimizer.zero_grad()
# step 2. compute the output
y_pred = classifier(batch_dict['x_surname'])
# step 3. compute the loss
loss = loss_func(y_pred, batch_dict['y_nationality'])
loss_t = loss.item()
running_loss += (loss_t - running_loss) / (batch_index + 1)
# step 4. use loss to produce gradients
loss.backward()
# step 5. use optimizer to take gradient step
optimizer.step()
# -----------------------------------------
# compute the accuracy
acc_t = compute_accuracy(y_pred, batch_dict['y_nationality'])
running_acc += (acc_t - running_acc) / (batch_index + 1)
# update bar
train_bar.set_postfix(loss=running_loss, acc=running_acc,
epoch=epoch_index)
train_bar.update()
train_state['train_loss'].append(running_loss)
train_state['train_acc'].append(running_acc)
# Iterate over val dataset
# setup: batch generator, set loss and acc to 0; set eval mode on
dataset.set_split('val')
batch_generator = generate_batches(dataset,
batch_size=args.batch_size,
device=args.device)
running_loss = 0.
running_acc = 0.
classifier.eval()
for batch_index, batch_dict in enumerate(batch_generator):
# compute the output
y_pred = classifier(batch_dict['x_surname'])
# step 3. compute the loss
loss = loss_func(y_pred, batch_dict['y_nationality'])
loss_t = loss.item()
running_loss += (loss_t - running_loss) / (batch_index + 1)
# compute the accuracy
acc_t = compute_accuracy(y_pred, batch_dict['y_nationality'])
running_acc += (acc_t - running_acc) / (batch_index + 1)
val_bar.set_postfix(loss=running_loss, acc=running_acc,
epoch=epoch_index)
val_bar.update()
train_state['val_loss'].append(running_loss)
train_state['val_acc'].append(running_acc)
train_state = update_train_state(args=args, model=classifier,
train_state=train_state)
scheduler.step(train_state['val_loss'][-1])
if train_state['stop_early']:
break
train_bar.n = 0
val_bar.n = 0
epoch_bar.update()
except KeyboardInterrupt:
print("Exiting loop")
classifier.load_state_dict(torch.load(train_state['model_filename']))
classifier = classifier.to(args.device)
dataset.class_weights = dataset.class_weights.to(args.device)
loss_func = nn.CrossEntropyLoss(dataset.class_weights)
dataset.set_split('test')
batch_generator = generate_batches(dataset,
batch_size=args.batch_size,
device=args.device)
running_loss = 0.
running_acc = 0.
classifier.eval()
for batch_index, batch_dict in enumerate(batch_generator):
# compute the output
y_pred = classifier(batch_dict['x_surname'])
# compute the loss
loss = loss_func(y_pred, batch_dict['y_nationality'])
loss_t = loss.item()
running_loss += (loss_t - running_loss) / (batch_index + 1)
# compute the accuracy
acc_t = compute_accuracy(y_pred, batch_dict['y_nationality'])
running_acc += (acc_t - running_acc) / (batch_index + 1)
train_state['test_loss'] = running_loss
train_state['test_acc'] = running_acc
print("Test loss: {};".format(train_state['test_loss']))
print("Test Accuracy: {}".format(train_state['test_acc']))
运行结果如下:
4.5模型性能评估
此处,作者使用分类新姓氏和查看新姓氏top-k预测两种方式进行性能评估(MLP和CNN此处实现代码有所不同,在两者中间作者加了提示,请注意)。
def predict_nationality(surname, classifier, vectorizer):
"""Predict the nationality from a new surname
Args:
surname (str): the surname to classifier
classifier (SurnameClassifer): an instance of the classifier
vectorizer (SurnameVectorizer): the corresponding vectorizer
Returns:
a dictionary with the most likely nationality and its probability
"""
vectorized_surname = vectorizer.vectorize(surname)
vectorized_surname = torch.tensor(vectorized_surname).view(1, -1)
result = classifier(vectorized_surname, apply_softmax=True)
probability_values, indices = result.max(dim=1)
index = indices.item()
predicted_nationality = vectorizer.nationality_vocab.lookup_index(index)
probability_value = probability_values.item()
return {'nationality': predicted_nationality, 'probability': probability_value}
new_surname = input("Enter a surname to classify: ")
classifier = classifier.to("cpu")
prediction = predict_nationality(new_surname, classifier, vectorizer)
print("{} -> {} (p={:0.2f})".format(new_surname,
prediction['nationality'],
prediction['probability']))
def predict_topk_nationality(name, classifier, vectorizer, k=5):
vectorized_name = vectorizer.vectorize(name)
vectorized_name = torch.tensor(vectorized_name).view(1, -1)
prediction_vector = classifier(vectorized_name, apply_softmax=True)
probability_values, indices = torch.topk(prediction_vector, k=k)
# returned size is 1,k
probability_values = probability_values.detach().numpy()[0]
indices = indices.detach().numpy()[0]
results = []
for prob_value, index in zip(probability_values, indices):
nationality = vectorizer.nationality_vocab.lookup_index(index)
results.append({'nationality': nationality,
'probability': prob_value})
return results
new_surname = input("Enter a surname to classify: ")
classifier = classifier.to("cpu")
k = int(input("How many of the top predictions to see? "))
if k > len(vectorizer.nationality_vocab):
print("Sorry! That's more than the # of nationalities we have.. defaulting you to max size :)")
k = len(vectorizer.nationality_vocab)
predictions = predict_topk_nationality(new_surname, classifier, vectorizer, k=k)
print("Top {} predictions:".format(k))
print("===================")
for prediction in predictions:
print("{} -> {} (p={:0.2f})".format(new_surname,
prediction['nationality'],
prediction['probability']))
##下面就是CNN的模型预估实现代码了
##————————————————————————————————————————————————————————————————————————————————
def predict_nationality(surname, classifier, vectorizer):
"""Predict the nationality from a new surname
Args:
surname (str): the surname to classifier
classifier (SurnameClassifer): an instance of the classifier
vectorizer (SurnameVectorizer): the corresponding vectorizer
Returns:
a dictionary with the most likely nationality and its probability
"""
vectorized_surname = vectorizer.vectorize(surname)
vectorized_surname = torch.tensor(vectorized_surname).unsqueeze(0)
result = classifier(vectorized_surname, apply_softmax=True)
probability_values, indices = result.max(dim=1)
index = indices.item()
predicted_nationality = vectorizer.nationality_vocab.lookup_index(index)
probability_value = probability_values.item()
return {'nationality': predicted_nationality, 'probability': probability_value}
new_surname = input("Enter a surname to classify: ")
classifier = classifier.cpu()
prediction = predict_nationality(new_surname, classifier, vectorizer)
print("{} -> {} (p={:0.2f})".format(new_surname,
prediction['nationality'],
prediction['probability']))
def predict_topk_nationality(surname, classifier, vectorizer, k=5):
"""Predict the top K nationalities from a new surname
Args:
surname (str): the surname to classifier
classifier (SurnameClassifer): an instance of the classifier
vectorizer (SurnameVectorizer): the corresponding vectorizer
k (int): the number of top nationalities to return
Returns:
list of dictionaries, each dictionary is a nationality and a probability
"""
vectorized_surname = vectorizer.vectorize(surname)
vectorized_surname = torch.tensor(vectorized_surname).unsqueeze(dim=0)
prediction_vector = classifier(vectorized_surname, apply_softmax=True)
probability_values, indices = torch.topk(prediction_vector, k=k)
# returned size is 1,k
probability_values = probability_values[0].detach().numpy()
indices = indices[0].detach().numpy()
results = []
for kth_index in range(k):
nationality = vectorizer.nationality_vocab.lookup_index(indices[kth_index])
probability_value = probability_values[kth_index]
results.append({'nationality': nationality,
'probability': probability_value})
return results
new_surname = input("Enter a surname to classify: ")
k = int(input("How many of the top predictions to see? "))
if k > len(vectorizer.nationality_vocab):
print("Sorry! That's more than the # of nationalities we have.. defaulting you to max size :)")
k = len(vectorizer.nationality_vocab)
predictions = predict_topk_nationality(new_surname, classifier, vectorizer, k=k)
print("Top {} predictions:".format(k))
print("===================")
for prediction in predictions:
print("{} -> {} (p={:0.2f})".format(new_surname,
prediction['nationality'],
prediction['probability']))