[更新完毕]2025妈妈杯大数据竞赛B题mathorcup:物流理赔风险识别及服务升级数学建模数模教学大学生辅导思路代码助攻

已更新全部1-3问代码和文章,完整内容请看文末简介

物流理赔风险识别及服务升级问题
摘要
在本研究中,我们针对问题一,提出了一种基于分位数回归与保序回归的风险标注方法。首先,计算了每条运单的索赔差额,并基于实际赔付金额将数据进行等频分箱。接着,使用80%和97%分位数作为合理诉求与诉求偏高、诉求偏高与严重超额的边界,并通过保序回归平滑分位数边界,确保随着赔付金额的增加,风险分类的阈值逐渐上升。最后,为避免“严重超额”类别样本占比过高,我们对分类结果进行了校准。
针对问题二构建一个基于随机森林回归的模型,预测物流运单的实际赔付金额。通过对数据集中的数值型和类别型特征进行标准化和独热编码处理,模型成功地捕捉了影响赔付金额的关键因素,包含实际赔付金额差额和运输节点事故率。模型评估结果表明,随机森林回归能够有效预测大多数运单的赔付金额,尤其在中低赔付金额的预测上表现出色。然而,残差分析揭示,随着预测金额的增加,模型在高赔付金额区域的误差逐渐放大,提示未来需要进一步优化模型以处理特殊情况。通过特征重要性分析,我们发现结果是对赔付金额预测贡献最大的特征,为后续优化和决策提供了有力依据。
问题三通过随机森林回归模型对物流理赔数据进行分析,旨在预测未来运单的实际赔付金额。在数据预处理阶段,我们对缺失值进行了处理,选取了与赔付金额高度相关的特征,并对数据进行了标准化和独热编码。模型训练后,结果表明,随机森林回归模型在预测赔付金额方面表现出较高的准确性,R²值接近0.95,均方误差较低。可视化分析显示,模型能够有效区分“合理诉求”和“诉求偏高”类别,而在“严重超额”类别的预测中存在一定的误差,主要由于该类别样本稀少且赔付金额波动较大。特征重要性分析表明,运单保价金额和起始节点的发单量对模型预测贡献最大。
关键词:随机森林、保序回归

在这里插入图片描述

目录
物流理赔风险识别及服务升级问题 1
摘要 1
一、 问题重述 3
1.1 问题背景 3
1.2 要解决的问题 3
二、 问题分析 5
2.1 任务一的分析 5
2.2 任务二的分析 5
2.3 任务三的分析 5
三、 问题假设 6
四、 模型原理 7
4.1 随机森林模型 7
4.2 保序回归模型 8
五、 模型建立与求解 10
5.1 问题一建模与求解 10
5.2 问题二建模与求解 15
5.3 问题三建模与求解 19
六、 模型评价与推广 29
6.1 模型的评价 29
6.1.1模型优点 29
6.1.2模型缺点 30
6.2 模型推广 31
附录【自行删减】 32

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

本文所建立模型具有以下优点 :

1.方法合理,贴合业务逻辑.本文在风险标注环节引入分位数回归与保序回归相结合的策略,不仅保障了风险阈值的单调性,还充分考虑了赔付金额与索赔差额之间的非线性关系,具有良好的解释性与实用性。
2.建模体系完整,预测性能优异.在赔付金额预测方面,采用随机森林回归模型,能够有效挖掘特征间复杂的非线性关系。模型在测试集上的决定系数(R²)接近 0.95,说明其在中低赔付金额区间具有较高的拟合精度,能够为企业提供可靠的数值预测支撑。
3.特征工程完善,适应性强.对于包含多类型特征的数据,本文通过标准化、独热编码等预处理操作,使模型在高维特征空间中仍具有良好的泛化能力。此外,模型通过特征重要性分析揭示了保价金额、运输节点事故率等关键因素,为后续业务优化提供了依据。
4.考虑类别不平衡问题,提升分类稳定性.在构建分类模型时,通过风险标签占比校准与分界值动态调整的方式,有效控制了“严重超额”类别的比例,有助于提升模型在实际业务中对极端索赔行为的识别能力。

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import classification_report
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.isotonic import IsotonicRegression
import matplotlib.pyplot as plt
import seaborn as sns
# 设置中文字体
plt.rcParams['font.sans-serif'] = ['SimHei']  # 使用黑体
plt.rcParams['axes.unicode_minus'] = False  # 解决坐标轴负数显示问题

# 1. 数据加载与预处理
df_train = pd.read_excel('附件1.xlsx')  # 读取附件1数据
df_test = pd.read_excel('附件2.xlsx')  # 读取附件2数据

# 计算索赔差额
df_train['D'] = df_train['payment_real_money'] - df_train['payment_contract_money']  # 索赔差额 = 实际赔付金额 - 索赔金额

# 2. 分箱处理(用于计算风险标注)
# 根据实际赔付金额(payment_real_money)对数据进行等频分箱
df_train['A_bin'] = pd.qcut(df_train['payment_real_money'], q=20, duplicates='drop')  # 使用20个等频箱

# 3. 计算每个分箱内的索赔差额的分位数(80%和97%)作为风险标注的边界
q1_series = df_train.groupby('A_bin')['D'].quantile(0.80)  # 80%分位,作为合理/偏高的边界
q2_series = df_train.groupby('A_bin')['D'].quantile(0.97)  # 97%分位,作为偏高/严重超额的边界

# 4. 提取每个分箱的中心点(即实际赔付金额的中位数)
A_mid = df_train.groupby('A_bin')['payment_real_money'].median()

# 5. 保序回归平滑
iso1 = IsotonicRegression(increasing=True)  # 保序回归模型
iso2 = IsotonicRegression(increasing=True)

# 对第80分位和第97分位进行回归拟合
Q1 = iso1.fit_transform(A_mid.values, q1_series.values)
Q2 = iso2.fit_transform(A_mid.values, q2_series.values)

# 6. 使用回归模型计算Q1(A)和Q2(A)
def get_risk_label(row):
    actual_comp = row['payment_real_money']
    D = row['D']
    
    # 使用回归模型计算对应的Q1(A)和Q2(A)
    Q1_A = np.interp(actual_comp, A_mid.values, Q1)
    Q2_A = np.interp(actual_comp, A_mid.values, Q2)

    # 根据阈值划分类别
    if D <= Q1_A:
        return '合理诉求'
    elif Q1_A < D <= Q2_A:
        return '诉求偏高'
    else:
        return '严重超额'

# 7. 对训练数据进行风险标注
df_train['risk_label'] = df_train.apply(get_risk_label, axis=1)

# 8. 数据预处理:准备训练数据
# 将标注好的训练数据的“risk_label”转为分类变量(标签编码)
df_train['risk_label'] = df_train['risk_label'].map({'合理诉求': 0, '诉求偏高': 1, '严重超额': 2})

# 选择用于训练的特征(删除无关特征)
features = ['route_type', 'is_customer_to_customer', 'is_fresh_and_delv_promise', 'waybill_price_protect_money', 
            'start_city_id', 'end_city_id', 'consigner_id', 'receiver_id', 'is_staff', 
            'plan_delv_to_real_delv_diff', 'abnormal_reason', 'source', 'real_delv_to_case_create_diff', 
            'payment_contract_money', 'goods_category', 'goods_level', 'bc_source', 'customer_role', 
            'start_node_waybill_num', 'start_node_accident_rate', 'start_node_real_claim_num_ratio', 
            'end_node_waybill_num', 'end_node_accident_rate', 'end_node_real_claim_num_ratio']

X_train = df_train[features]
y_train = df_train['risk_label']

# 9. 特征处理
# 对数值特征进行标准化,对类别特征进行独热编码
numeric_features = X_train.select_dtypes(include=['float64', 'int64']).columns
categorical_features = X_train.select_dtypes(include=['object']).columns

numeric_transformer = StandardScaler()
categorical_transformer = OneHotEncoder(handle_unknown='ignore')

preprocessor = ColumnTransformer(
    transformers=[
        ('num', numeric_transformer, numeric_features),
        ('cat', categorical_transformer, categorical_features)
    ])

# 10. 创建模型:使用随机森林分类器进行预测
clf = Pipeline(steps=[
    ('preprocessor', preprocessor),
    ('classifier', RandomForestClassifier(n_estimators=100, random_state=42))
])

# 训练模型
clf.fit(X_train, y_train)

本方案针对2025年妈MathorCup大数据:B供高质量成品文章、完整解代码及所有结果表。内容涵盖Python,MATLAB版本代码、Word论文文档无水印(Word版本),并包含详细思路解析,助力参赛队伍高效完成比赛,冲刺高奖项。 【核心内容】 成品文章 包含完整解思路、模型构建、数据分析与结果讨论。 格式规范,符合竞赛论文要求,可直接提交或稍作修改使用。 完整代码 提供Python和MATLAB语言实现,覆盖数据处理、模型训练、结果可视化全流程。 代码模块化设计,注释清晰,便于理解与二次开发。 结果表格 所有实验数据与结果均已整理成表,直观展示模型性能与对比分析。 提供一键转换工具,方便用户根据需求调整论文格式。 【产品优势】 高效实用:成品论文与代码已通过严格测试,确保结果准确且可复现。 全面覆盖:从思路解析到最终成果,一站式解决参赛需求。 灵活便捷:支持多平台使用,网盘直发,后续更新免费获取。 【适用人群】 希望快速掌握解思路与实现方法的学习者。 需要高质量参考材料的科研爱好者。 【交付清单】 成品论文(Word) Python代码包 数据集与结果表 (1)报名阶段:即日起-2025年10月17日 (2)初赛阶段:2025年10月24日18:00-2025年10月31日20:00 (3)复赛阶段:2025年12月5日18:00-2025年12月12日20:00 (4)金银铜奖答辩: 复赛中综合总排名前12的队伍(不分组别,不分赛)进入金银铜奖答辩环节,答辩采用线上或者线下的方式进行。答辩决出金奖1支队伍、银奖2支队伍、铜奖5支队伍(不分组别,不分赛)。 (5)2026年1月,公布竞赛结果、证书发布等: 1、公布获奖名单初稿; 2、公示结果异议查询; 3、终稿获奖名单公布。
本方案针对2025年妈MathorCup大数据:A供高质量成品文章、完整解代码及所有结果表。内容涵盖Python,MATLAB版本代码、Word论文文档无水印(Word版本),并包含详细思路解析,助力参赛队伍高效完成比赛,冲刺高奖项。 【核心内容】 成品文章 包含完整解思路、模型构建、数据分析与结果讨论。 格式规范,符合竞赛论文要求,可直接提交或稍作修改使用。 完整代码 提供Python和MATLAB语言实现,覆盖数据处理、模型训练、结果可视化全流程。 代码模块化设计,注释清晰,便于理解与二次开发。 结果表格 所有实验数据与结果均已整理成表,直观展示模型性能与对比分析。 提供一键转换工具,方便用户根据需求调整论文格式。 【产品优势】 高效实用:成品论文与代码已通过严格测试,确保结果准确且可复现。 全面覆盖:从思路解析到最终成果,一站式解决参赛需求。 灵活便捷:支持多平台使用,网盘直发,后续更新免费获取。 【适用人群】 希望快速掌握解思路与实现方法的学习者。 需要高质量参考材料的科研爱好者。 【交付清单】 成品论文(Word) Python代码包 数据集与结果表 (1)报名阶段:即日起-2025年10月17日 (2)初赛阶段:2025年10月24日18:00-2025年10月31日20:00 (3)复赛阶段:2025年12月5日18:00-2025年12月12日20:00 (4)金银铜奖答辩: 复赛中综合总排名前12的队伍(不分组别,不分赛)进入金银铜奖答辩环节,答辩采用线上或者线下的方式进行。答辩决出金奖1支队伍、银奖2支队伍、铜奖5支队伍(不分组别,不分赛)。 (5)2026年1月,公布竞赛结果、证书发布等: 1、公布获奖名单初稿; 2、公示结果异议查询; 3、终稿获奖名单公布。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值