Origin将3D散点图升级为高大上的带投影3D曲面图

3D曲面图是一种数据可视化中的技术,可以通过三维空间中的曲面形状与颜色映射相结合来表现数据的特征和规律。带投影3D曲面图主要在科学计算、工程仿真、数据分析和可视化领域中广泛应用,能够帮助用户更好地理解复杂的三维数据结构和趋势。

相比于3D散点图,带投影3D曲面图能更好地来表现数据的特征和规律,也可以大大提高论文地质量。

本期教程我们使用Origin将3D散点图升级为高大上的带投影3D曲面图。

1.打开Origin软件,导入数据,数据格式为X,Y,Z三列数据,X,Y列是双因子变化,Z列是在不同因子条件下得到的;

2.选中所有的数据,点击工作表—转换为矩阵—XYZ网格化—打开对话框;

3.在跳出的对话框,直接点击确定;

4.然后转换成数据矩阵;

5.选中所有的矩阵数据,点击app,选中3D Smoother;

6.在跳出的对话框,点击Auto preview,在预览区会出现平滑后的3D曲面图,点击ok;

7.绘制出来的3D曲面图如下图所示:

8.右击左上角的图层1,选择图层内容,复制一个平滑后的曲面图;

9.双击图形,选择复制的图层,在曲面对话框下,勾选“展平”和“按刻度范围的比例在Z轴移动”。

10.双击坐标轴,对X、Y、Z轴的取值起始和结束范围进行修改,使投影完全展示到我们XY面中;

11.接着对其进行其它细节美化,其中包括修改坐标轴标题等;其最终效果图如下所示:

以上就是Origin绘制带投影的3D曲面图的基本步骤,根据以上步骤绘制即可绘制出带投影的3D曲面图。

——END——

### 如何在Origin中创建三维曲面图 为了在Origin中创建三维曲面图,通常有两种主要方法[^2]: 一种方式涉及将数据表中的特定列标记为X、Y和Z坐标,从而构建3D XYZ散点图表。然而,对于生成连续的三维曲面图来说,更常用的是第二种方法—通过矩阵表(Matrix)来表示XYZ数据集并将其转换成平滑连接的表面。 #### 使用矩阵表创建三维曲面图 1. **准备数据** 需要先准备好用于描述曲面上各点位置的数据集合。这可以通过定义一系列离散点上的高度值(z),以及它们对应的水平位置(x, y)来完成。如果原始数据不是以矩阵形式存在的,则需先转化为适合的形式。 2. **导入或输入数据至矩阵窗口** 打开一个新的矩阵工作簿,在其中按照行列布局依次填入z值。每一行代表不同的y坐标下的测量结果,而每列则对应着变化的x坐标的观测值。确保所有的数值都正确无误地放置到了相应的格子内。 3. **设置矩阵维度与链接属性** 调整矩阵的工作区大小使之匹配实际的空间范围,并设定好每个单元格所代表的具体物理距离。此外,还需指定哪些列分别关联到外部变量x和y,以便后续能够准确映射回真实世界的位置关系。 4. **绘制三维曲面** 完成了上述准备工作之后,就可以选择合适的绘图选项卡下找到`Plot>` `3D: Surface...`命令,启动对话框后确认默认参数即可快速得到一张初步成型的三维曲面图像。 5. **自定义外观样式** 利用右侧工具栏里的各项功能按钮进一步美化和完善最终作品。比如调整视角角度、改变颜色方案或是增加辅助线条等操作都能让成品更加直观易懂。 ```python import numpy as np from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(projection='3d') # Example data generation similar to what would be input into an Origin matrix sheet. x = np.linspace(-5, 5, 100) y = np.linspace(-5, 5, 100) X, Y = np.meshgrid(x, y) R = np.sqrt(X**2 + Y**2) Z = np.sin(R) surf = ax.plot_surface(X, Y, Z, cmap='viridis') plt.show() ``` 此代码片段展示了如何使用Python库matplotlib模拟类似于在Origin软件里建立的一个简单正弦波形的三维曲面图。当然,在真正的Origin环境中,用户不需要编写任何脚本就能轻松实现这样的效果[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值