4个基本子空间

前面我们已经介绍过矩阵的两个重要空间:列空间和零空间,今天继续介绍矩阵的另外两个重要空间:行空间和左零空间。A的行空间就是AT的列空间,A的左零空间就是AT的零空间,文字描述起来比较拗口,用数学符号表示一下就会简单明了:对于矩阵A,其列空间是C(A),零空间N(A),行空间是C(AT),左零空间是N(AT)。注意,虽然今天新增的这两个空间涉及AT ,但我们还是从A的角度去看待这两个子空间。

4个子空间的维数分别是多少?

A为m*n矩阵,秩为r,A的零空间N(A)里都是n维向量,所以N(A)是Rn的子空间,列空间C(A)是所有列的线性组合,每列是m维,所以C(A)是Rm的子空间,同样行空间C(AT)是Rn的子空间,而左零空间N(AT)是Rm的子空间,首先结合以前的知识,我们知道列空间C(A)的维数是r,零空间N(A)维数是n-r,行空间C(AT)维数是r(A转置的主元数与A的主元数是相同的),左零空间N(AT)是m-r。

4个子空间的基分别是什么?

对于列空间,我们已经学会使用消元确定主元列,而主元列就是C(A)的一组基,对于零空间,我们也可以学会利用行最简式去寻找基,即特殊解,那么对于行空间和左零空间,我们当然也可以将矩阵A转置后再采用相同的方法去求,但直觉告诉我们求行空间的基、左零空间的基应该有更便捷的方法,那我们就可以减少工作量了。

我们在求列空间时,会对矩阵A进行消元并化简,如下所示,最终将A化到行最简式R,


很明显R的列空间不等于A的列空间 ,因为消元改变了A的列,但A的行空间却等于R的行空间 ,因为消元并没有让A的行发生本质变化。这样我们可以将求A的行空间转化为求R的行空间,容易看出R的行空间的基,就是R的前r行(注意消元时如果出现当前主元为0时要将下面的非零行移上来),也就是说R的前r行就是A的行空间的基(注意不是A的前r行),对于这个例子,A的秩r=2,因此A的行空间的基就是R的前两行。那么为什么这两行就是A的行空间的基?因为想象一下,我们之前所做的从A到R的所有行变换,如果沿着这些变换从R到A再逆变回去,逆变无非也就是一些数乘和向量相加,因此A中所有的行都可用R中的这两行线性组合表示出来,并且R中的前两行都不是非零行,说明两个向量是无关的,R的前r行就是A的行空间的基。在消元化简的过程中,我们不仅找到了A的行空间的基,而且化简到R后得到相对来说最好的基,最好的意思是它的形式最为简洁。顺便提一下,我们前面在分析子空间维数时说过A转置的主元数与A的主元数是相同的,虽然没有给出证明,但是从上面的例子中我们可以看出这个结论,因为共有r个主元,r个非零行,因此行空间的维数是r。

以上是对行空间基的分析,接下来介绍A的左零空间的基,首先提一下为什么要取名叫A的左零空间,这个名字并不是随便取的,求左零空间也就是求满足A Ty=0的y,前面已经说过,虽然其中有A T,但我们要从A的角度去看,所以对A Ty=0两边求转置以将转置去掉,得到y TA=0 T,现在理解为什么称之为A的左零空间了吧。言归正传,接着讨论如何求左零空间的基,我们以前曾经用gauss-jordon消元法求解一个方阵的逆,还以上面的A为例,现在我们把这个方法用于求左零空间的基,当然我们不是用来求A的逆,因为上面的例子中A不是方阵,其逆肯定不存在。gauss-jordon消元过程为 ,其中R是A的行最简形,从上面的过程可以看出,对A进行了什么样的操作,就对I进行了什么样的操作,所以E记录了所有的行变换,且E*A=R,对于刚刚的的例子,我们可求出E= ,因为R中的第3行是0 T,又因为E*A=R,因此我们就找到了这样的y T,所以E的第3行就是A的行空间的基,从E中我们不仅可以得到左零空间的维数,还能求出整个左零空间,对于上面这个例子,左零空间的维数是1,基只有一个向量。以上就是求左零空间基的方法,其实求消元矩阵E也不是一件容易的事,但是至少我们不需要把矩阵转置然后从头开始计算。
  • 7
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值