Ubuntu下安装libtorch GPU版并测试demo

  1. 进入pytorch官网 https://pytorch.org/get-started/locally/
    下载源码
    在这里插入图片描述
    但我下载的是1.10.2版本的,下载链接如下:
https://download.pytorch.org/libtorch/cu113/libtorch-shared-with-deps-1.10.2%2Bcu113.zip

下载完成之后,解压到你喜欢的目录下

  1. 在Linux下打开CLion,创建一个Cmake的项目
    选择C++标准为C++17,否则会运行报错
    在这里插入图片描述

  2. 配置CMakeLists.txt文件:

cmake_minimum_required(VERSION 3.0 FATAL_ERROR)
project(libtorch_test)

list(APPEND CMAKE_PREFIX_PATH "/opt/src_code/libtorch")

add_executable(libtorch_test main.cpp)

find_package(Torch REQUIRED)
target_link_libraries(libtorch_test "${TORCH_LIBRARIES}")
set_property(TARGET libtorch_test PROPERTY CXX_STANDARD 17)


  1. 编辑main.cpp文件:
#include <torch/script.h>
#include <torch/torch.h>
#include <iostream>
int main() {
    std::cout << "检查CDUA是否可用:" << torch::cuda::is_available() << std::endl;
    std::cout << "检查cudnn是否可用:" << torch::cuda::cudnn_is_available() << std::endl;
    std::clock_t s, e;
    s = clock();
    torch::Tensor cuda_output;
    for (int i=0;i<1;i++) {
        cuda_output = torch::randn({ 5, 4 }, torch::device(torch::kCUDA));
    }
    std::cout << cuda_output << std::endl;
    e = clock();
    std::cout << "use time: " << (e - s) << " 微秒" << std::endl;
    return 0;
}


  1. 测试运行
    在这里插入图片描述
    打印出CUDAFloatype{5,4},那么意味着这个张量是在显卡内存中分配的。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值