如何具体理解Self Attention中的Q、K、V以及计算过程

本文详细解释了SelfAttention机制中Q、K、V的作用,以及它们在BERT模型中的计算过程,包括线性变换、注意力权重的计算和Softmax的应用,强调了注意力机制的自注意力特性及其与位置无关的特点。
摘要由CSDN通过智能技术生成

如何具体理解Self Attention中的Q、K、V以及计算过程

一、计算过程理解

1、我们直接用torch实现一个 S e l f A t t e n t i o n Self Attention SelfAttention

首先定义三个线性变换矩阵, q u e r y , k e y , v a l u e query, key, value query,key,value

class BertSelfAttention(nn.Module):
    self.query = nn.Linear(config.hidden_size, self.all_head_size) # 输入768, 输出768
    self.key = nn.Linear(config.hidden_size, self.all_head_size) # 输入768, 输出768
    self.value = nn.Linear(config.hidden_size, self.all_head_size) # 输入768, 输出768

注意,这里的 q u e r y , k e y , v a l u e query, key, value query,key,value只是一种操作(线性变换)的名称,实际的 Q / K / V Q/K/V Q/K/V是这三个线性操作的输出,三个变换的输入都是 768 768 768维,输出都是 768 768 768维,也就是三个线性变换矩阵的维度都为 ( 768 , 768 ) (768, 768) (768,768)

2、假设三种操作的输入都是同一个矩阵,这里暂且定为长度为 6 6 6的句子,每个 t o k e n token token的特征维度是 768 768 768,那么输入就是 ( 6 , 768 ) (6, 768) 6,768,每一行就是一个字的词向量,像这样:

图1 输入词向量矩阵
图1 输入词向量矩阵

乘以上面代码中的三种线性变换操作就得到 了 Q / K / V 了Q/K/V Q/K/V 三个矩阵,他们的维度为 ( 6 , 768 ) ∗ ( 768 , 768 ) = ( 6 , 768 ) (6, 768)*(768,768) = (6,768) (6,768)(768,768)=(6,768),维度其实没变,即此刻的 Q / K / V Q/K/V Q/K/V分别为:

图2 输入词向量矩阵与线性变换矩阵相乘输出Q、K、V矩阵
图2 输入词向量矩阵与线性变换矩阵相乘输出Q、K、V矩阵

代码为:

class BertSelfAttention(nn.Module):
    def __init__(self, config):
        self.query = nn.Linear(config.hidden_size, self.all_head_size) # 输入768, 输出768
        self.key = nn.Linear(config.hidden_size, self.all_head_size) # 输入768, 输出768
        self.value = nn.Linear(config.hidden_size, self.all_head_size) # 输入768, 输出768
    
    def forward(self,hidden_states): # hidden_states 维度是(6, 768)
        Q = self.query(hidden_states)
        K = self.key(hidden_states)
        V = self.value(hidden_states)

3、计算Self Attention

Attention ( Q , K , V ) = Softmax ( Q K T d k ) V \text{Attention}(Q,K,V)=\text{Softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V Attention(Q,K,V)=Softmax(dk QKT)V

(1) 首先是 Q Q Q K K K矩阵相乘, ( 6 , 768 ) × ( 6 , 768 ) T = ( 6 , 6 ) (6, 768)×(6, 768)^T=(6, 6) (6,768)×(6,768)T=(6,6),如图3:

图3 Q和K矩阵相乘的结果
图3 Q和K矩阵相乘的结果

具体的计算过程,首先用 Q Q Q的第一行,即“我”字的768特征和 K K K中“我”字的768为特征点乘求和,得到输出矩阵 ( 0 , 0 ) (0,0) (00)位置的数值,这个数值就代表了“我想吃酸菜鱼”中“我”字对“我”字的注意力权重。最终输出矩阵的第一行就是“我”字对“我想吃酸菜鱼”里面每个字的注意力权重。整个输出矩阵就是“我想吃酸菜鱼”里面每个字对其它字(包括自己)的注意力权重。

(2) 然后是除以 d k \sqrt{d_k} dk ,这个 d i m dim dim就是 768 768 768
1)至于为什么要除以这个数值?主要是为了缩小点积范围,确保 s o f t m a x softmax softmax梯度稳定性。
2)为什么要 S o f t m a x Softmax Softmax?主要是为了保证注意力权重的非负性,同时增加非线性。

(3) 然后就是刚才的 注意力权重 注意力权重 注意力权重 V V V矩阵相乘,如图4:

图4 注意力权重和V矩阵相乘
图4 注意力权重和V矩阵相乘

注意力权重 × V A L U E 矩阵 = 最终结果 注意力权重 × VALUE矩阵 = 最终结果 注意力权重×VALUE矩阵=最终结果

首先是“我”这个字对“我想吃酸菜鱼”这句话里面每个字的 注意力权重 注意力权重 注意力权重,和 V V V中“我想吃酸菜鱼”里面每个字的第一维特征进行相乘再求和,这个过程其实就相当于用每个字的权重对每个字的特征进行加权求和。然后再用“我”这个字对“我想吃酸菜鱼”这句话里面每个字的 注意力权重 注意力权重 注意力权重 V V V中“我想吃酸菜鱼”里面每个字的第二维特征进行相乘再求和,依次类推最终也就得到了 ( 6 , 768 ) (6,768) (6,768) 的结果矩阵,和输入保持一致。

class BertSelfAttention(nn.Module):
    def __init__(self, config):
        self.query = nn.Linear(config.hidden_size, self.all_head_size) # 输入768, 输出768
        self.key = nn.Linear(config.hidden_size, self.all_head_size) # 输入768, 输出768
        self.value = nn.Linear(config.hidden_size, self.all_head_size) # 输入768, 输出768
    
    def forward(self,hidden_states): # hidden_states 维度是(L, 768)
        Q = self.query(hidden_states)
        K = self.key(hidden_states)
        V = self.value(hidden_states)
        
        attention_scores = torch.matmul(Q, K.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        out = torch.matmul(attention_probs, V)
        return out

4、为什么叫自注意力机制?

因为可以看到 Q / K / V Q/K/V Q/K/V都是通过同一句话的输入算出来的,按照上面的流程也就是一句话内每个字对其它字(包括自己)的权重分配。
如果不是自注意力的话, Q Q Q来自于句 A A A K K K, V V V来自于句 B B B

5、注意, K / V K/V K/V中,如果同时替换任意两个字的位置,对最终的结果是不会有影响的,也就是说注意力机制是没有位置信息的,不像CNN/RNN/LSTM,这也是为什么要引入位置embeding的原因。

二、整体代码

class BertSelfAttention(nn.Module):
    def __init__(self, config):
        self.query = nn.Linear(config.hidden_size, self.all_head_size) # 输入768, 输出768
        self.key = nn.Linear(config.hidden_size, self.all_head_size) # 输入768, 输出768
        self.value = nn.Linear(config.hidden_size, self.all_head_size) # 输入768, 输出768
    
    def forward(self,hidden_states): # hidden_states 维度是(L, 768)
        Q = self.query(hidden_states)
        K = self.key(hidden_states)
        V = self.value(hidden_states)
        
        attention_scores = torch.matmul(Q, K.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        out = torch.matmul(attention_probs, V)
        return out
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值