如何具体理解Self Attention中的Q、K、V以及计算过程

本文详细解释了SelfAttention机制中Q、K、V的作用,以及它们在BERT模型中的计算过程,包括线性变换、注意力权重的计算和Softmax的应用,强调了注意力机制的自注意力特性及其与位置无关的特点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如何具体理解Self Attention中的Q、K、V以及计算过程

一、计算过程理解

1、我们直接用torch实现一个 S e l f A t t e n t i o n Self Attention SelfAttention

首先定义三个线性变换矩阵, q u e r y , k e y , v a l u e query, key, value query,key,value

class BertSelfAttention(nn.Module):
    self.query = nn.Linear(config.hidden_size, self.all_head_size) # 输入768, 输出768
    self.key = nn.Linear(config.hidden_size, self.all_head_size) # 输入768, 输出768
    self.value = nn.Linear(config.hidden_size, self.all_head_size) # 输入768, 输出768

注意,这里的 q u e r y , k e y , v a l u e query, key, value query,key,value只是一种操作(线性变换)的名称,实际的 Q / K / V Q/K/V Q/K/V是这三个线性操作的输出,三个变换的输入都是 768 768 768维,输出都是 768 768 768维,也就是三个线性变换矩阵的维度都为 ( 768 , 768 ) (768, 768) (768,768)

2、假设三种操作的输入都是同一个矩阵,这里暂且定为长度为 6 6 6的句子,每个 t o k e n token token的特征维度是 768 768 768,那么输入就是 ( 6 , 768 ) (6, 768)

<think>好的,用户问的是怎么理解Self Attention里的QKV。之前已经介绍过大模型和Transformer的基本原理,其中提到了自注意力机制和QKV矩阵。现在需要深入解释QKV,可能需要从背景开始,逐步展开。 首先,用户可能对自注意力机制有一定的了解,但QKV的具体作用可能还不清楚。需要明确QKV的来源:它们是输入向量通过线性变换得到的三个矩阵。然后要解释每个矩阵的作用,比如Q代表查询,K代表键,V代表值。这里可能需要类比信息检索中的查询和键值对,帮助用户建立直观理解。 接下来,需要解释Q和K的点积计算相似度,然后缩放和SoftMax得到权重,最后与V相乘得到加权和。这个过程需要分步骤说明,可能用数学公式辅助,但要注意使用正确的LaTeX格式,如用户之前的系统指令所示。例如,公式应该用$$...$$,行内用$...$。 用户可能的疑问包括:为什么需要三个矩阵而不是直接用输入?为什么要缩放?多头注意力中QKV如何拆分?需要逐一解答这些潜在问题。同时,要避免使用过于专业的术语,保持解释的通俗性。 可能还需要举例说明,比如句子中的某个词如何通过QKV关注其他相关词,例如“它”指代动物时,模型如何通过注意力找到正确的名词。这样的例子能帮助用户理解实际应用。 还要注意结构清晰,分点或分步骤讲解,确保用户能跟上思路。最后总结QKV的作用,强调它们在捕捉依赖关系和动态权重方面的重要性。同时,检查是否符合之前的格式要求,如行内公式正确使用$,独立公式用$$并单独成段,中文回答等。</think>理解Self-Attention中的**Q(Query)、K(Key)、V(Value)**是掌握Transformer核心机制的关键。以下分步骤解释: --- ### **1. 背景:自注意力机制的目标** 自注意力(Self-Attention)的目标是让模型在处理序列(如句子)时,**动态判断每个词与其他词的相关性**。 例如,句子“猫追着老鼠,因为它饿了”中,“它”需要关联到“猫”而非“老鼠”。QKV的作用就是帮助模型完成这种关联计算--- ### **2. QKV的物理意义** Q、K、V是从输入向量通过线性变换(矩阵乘法)生成的三个矩阵: - **Query(查询)**:代表当前词需要“询问”其他词的某种特征。 - **Key(键)**:代表其他词可被查询的“标识”,用于与Query匹配。 - **Value(值)**:代表每个词实际需要贡献的信息。 **类比信息检索**: - 你(Query)拿着一个问题去图书馆查资料。 - 图书馆的书有索引关键词(Key)。 - 找到匹配的Key后,返回对应的内容(Value)。 --- ### **3. 计算过程分解** #### **步骤1:计算Query与Key的相似度** - 每个词的Query向量与所有词的Key向量做点积,衡量两者相关性: $$ \text{相似度分数} = Q_i \cdot K_j $$ - **缩放(Scale)**:为防止点积过大导致梯度消失,除以$\sqrt{d}$($d$为向量维度): $$ \text{分数缩放后} = \frac{Q_i \cdot K_j}{\sqrt{d}} $$ #### **步骤2:SoftMax归一化权重** - 对分数进行SoftMax,得到所有词对当前词的注意力权重(和为1): $$ \text{权重} = \text{SoftMax}\left( \frac{QK^T}{\sqrt{d}} \right) $$ #### **步骤3:加权聚合Value** - 用权重对Value向量加权求和,得到当前词的注意力输出: $$ \text{输出} = \sum (\text{权重} \times V) $$ **完整公式**: $$ \text{Attention}(Q, K, V) = \text{SoftMax}\left( \frac{QK^T}{\sqrt{d}} \right)V $$ --- ### **4. 为什么需要Q、K、V三个矩阵?** - **灵活性**:通过线性变换,Q、K、V可从不同角度表征输入(如关注语义、语法等不同特征)。 - **解耦相关性计算与信息提取**: - Q和K负责计算“哪些词相关”(相关性权重), - V负责提供“这些词的具体信息”(内容)。 --- ### **5. 实例解释** 以句子“猫追着老鼠,因为它饿了”为例: 1. 处理“它”时,其Query会与所有词的Key计算相似度。 2. 结果:与“猫”的Key匹配度高(因为“它”指代动物),而与“老鼠”“追”匹配度低。 3. Value矩阵中,“猫”对应的V会被高权重选中,最终输出包含“猫”的信息。 --- ### **6. 多头注意力(Multi-Head Attention)** - **核心思想**:并行使用多组Q、K、V(即多个“头”),每组关注不同维度的特征(如语义、语法、指代关系等)。 - **公式**: $$ \text{MultiHead}(Q, K, V) = \text{Concat}(\text{head}_1, \dots, \text{head}_h)W^O $$ 其中,$\text{head}_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)$,$W_i^Q, W_i^K, W_i^V$是各头的独立参数矩阵。 --- ### **总结** - **Q(查询)**:主动询问“我需要关注什么”。 - **K(键)**:被动提供“我可以回答什么”。 - **V(值)**:最终提供“我的具体信息是什么”。 - **本质**:通过QKV动态建模词与词之间的依赖关系,权重由数据驱动学习,避免了传统RNN/CNN的固定模式限制。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值