Java构建RAG系统全攻略

1. 知识库准备与索引

  • 数据源: 你需要一个结构化的知识库,可以是文本文件、数据库记录、维基百科 dump 等。
  • 文档处理:
    • 加载: 使用 Java IO/NIO 或数据库连接库读取文档。
    • 清洗: 移除无关字符、标准化格式。
    • 分块: 将大文档分割成更小的、语义上有意义的片段(chunks)。例如,按段落或固定长度分割。这有助于后续的精确检索。
    • 向量化: 这是关键步骤。为每个文本块生成一个数值向量(嵌入向量),该向量能捕捉其语义信息。你需要使用一个嵌入模型
      • Java 嵌入模型库: 可以使用如 Deep Java Library 加载预训练的 Sentence Transformers 模型(如 all-MiniLM-L6-v2)来计算文本嵌入向量。
      // 示例伪代码 - 使用DJL计算嵌入向量
      import ai.djl.*;
      import ai.djl.inference.*;
      import ai.djl.modality.*;
      import ai.djl.translate.*;
      
      Translator<String, float[]> translator = ... // 定义字符串到浮点数数组的转换器
      try (Predictor<String, float[]> predictor = model.newPredictor(translator)) {
          float[] embedding = predictor.predict("This is a text chunk.");
          // 保存 embedding 和对应的文本块
      }
      

  • 向量索引: 将所有文档块的嵌入向量存储在一个高效的向量数据库中,以便进行快速的近似最近邻搜索。
    • Java 向量数据库选项:
      • Lucene (近似向量搜索): Apache Lucene 支持通过 KnnVectorField 进行近似 KNN 搜索。你需要将向量存储为这种类型的字段。
      // 示例伪代码 - 使用Lucene索引向量
      Document doc = new Document();
      doc.add(new KnnVectorField("vector", embedding, VectorSimilarityFunction.COSINE));
      doc.add(new StoredField("text", chunkText));
      indexWriter.addDocument(doc);
      

      • 专用向量数据库客户端: 如 Milvus、Qdrant、Pinecone 等通常提供 Java SDK。
      // 示例伪代码 - 使用Milvus Java SDK插入向量
      milvusClient.insert(
          InsertParam.newBuilder()
              .withCollectionName("knowledge_base")
              .addFieldValue("vector", embedding)
              .addFieldValue("text", chunkText)
              .build()
      );
      

2. 检索阶段

  • 用户查询: 接收用户的输入问题/提示。
  • 查询向量化: 使用与知识库文档块相同的嵌入模型,将用户查询也转换为一个嵌入向量。
    float[] queryEmbedding = predictor.predict(userQuery);
    

  • 相似度搜索: 在向量索引/数据库中,执行近似最近邻搜索,查找与查询向量最相似的 K 个文档块向量。
    • Lucene:
      // 示例伪代码 - Lucene KNN搜索
      KnnVectorQuery query = new KnnVectorQuery("vector", queryEmbedding, k);
      TopDocs topDocs = searcher.search(query, k);
      for (ScoreDoc scoreDoc : topDocs.scoreDocs) {
          Document hitDoc = searcher.doc(scoreDoc.doc);
          String retrievedText = hitDoc.get("text");
          // 收集检索到的文本块
      }
      

    • 专用向量数据库:
      // 示例伪代码 - Milvus搜索
      SearchParam searchParam = SearchParam.newBuilder()
          .withCollectionName("knowledge_base")
          .withFloatVectorFieldName("vector")
          .withFloatVectors(Arrays.asList(queryEmbedding))
          .withTopK(k)
          .build();
      SearchResults results = milvusClient.search(searchParam);
      for (QueryResult result : results.getResult()) {
          String retrievedText = result.getFieldValue("text", String.class);
          // 收集检索到的文本块
      }
      

  • 结果聚合: 将检索到的 Top K 个文本块(上下文)组合起来,准备输入给 LLM。

3. 生成阶段

  • 构造提示: 将用户的原始查询(query)和检索到的相关上下文(context)按照特定的模板组合成一个新的提示(prompt),输入给 LLM。例如:
    Answer the question based on the following context:
    Context: {retrieved_context_1} ... {retrieved_context_k}
    Question: {user_query}
    Answer:
    

    String promptTemplate = "Answer the question based on the following context:\nContext: %s\nQuestion: %s\nAnswer:";
    String context = String.join("\n", retrievedTexts); // 合并检索到的文本块
    String finalPrompt = String.format(promptTemplate, context, userQuery);
    

  • 调用 LLM: 使用 Java 调用 LLM 的 API 或本地运行的模型来生成文本。
    • API 调用 (如 OpenAI):
      // 示例伪代码 - 调用OpenAI API (使用HttpClient)
      HttpRequest request = HttpRequest.newBuilder()
          .uri(URI.create("https://api.openai.com/v1/chat/completions"))
          .header("Authorization", "Bearer YOUR_API_KEY")
          .header("Content-Type", "application/json")
          .POST(HttpRequest.BodyPublishers.ofString(
              String.format("{\"model\": \"gpt-3.5-turbo\", \"messages\": [{\"role\": \"user\", \"content\": \"%s\"}]}", finalPrompt)
          ))
          .build();
      HttpResponse<String> response = httpClient.send(request, HttpResponse.BodyHandlers.ofString());
      // 解析response获取生成的文本 (response.body())
      

    • 本地模型 (使用 DJL): 类似嵌入模型调用,但使用文本生成模型(如 GPT、Llama)的 PredictorTranslator
      try (Predictor<String, String> generator = generatorModel.newPredictor(translator)) {
          String generatedText = generator.predict(finalPrompt);
      }
      

  • 输出: 将 LLM 生成的文本作为最终答案返回给用户。

4. 整体流程整合

将上述步骤串联起来:

// 1. 用户输入
String userQuery = "Java中如何实现多线程?";

// 2. 检索阶段
float[] queryEmbedding = embeddingPredictor.predict(userQuery);
List<String> retrievedContexts = vectorIndex.searchTopK(queryEmbedding, 5); // 假设搜索Top 5

// 3. 构造提示
String context = String.join("\n\n", retrievedContexts);
String prompt = String.format("基于以下上下文回答问题:\n%s\n\n问题:%s\n回答:", context, userQuery);

// 4. 生成阶段
String answer = llmGenerator.generate(prompt); // 调用LLM生成

// 5. 输出结果
System.out.println("回答: " + answer);

依赖库概览

  • 文本处理/IO: Java 标准库。
  • 向量计算/嵌入模型: Deep Java Library (DJL)。
  • 向量索引:
    • 内置选项:Apache Lucene。
    • 外部服务:Milvus, Qdrant, Pinecone 等的 Java SDK。
  • LLM 调用:
    • API 调用:Java HttpClient (标准库或 Apache HttpClient, OkHttp)。
    • 本地模型:Deep Java Library (DJL)。

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值