1. 知识库准备与索引
- 数据源: 你需要一个结构化的知识库,可以是文本文件、数据库记录、维基百科 dump 等。
- 文档处理:
- 加载: 使用 Java IO/NIO 或数据库连接库读取文档。
- 清洗: 移除无关字符、标准化格式。
- 分块: 将大文档分割成更小的、语义上有意义的片段(chunks)。例如,按段落或固定长度分割。这有助于后续的精确检索。
- 向量化: 这是关键步骤。为每个文本块生成一个数值向量(嵌入向量),该向量能捕捉其语义信息。你需要使用一个嵌入模型。
- Java 嵌入模型库: 可以使用如 Deep Java Library 加载预训练的 Sentence Transformers 模型(如
all-MiniLM-L6-v2)来计算文本嵌入向量。
// 示例伪代码 - 使用DJL计算嵌入向量 import ai.djl.*; import ai.djl.inference.*; import ai.djl.modality.*; import ai.djl.translate.*; Translator<String, float[]> translator = ... // 定义字符串到浮点数数组的转换器 try (Predictor<String, float[]> predictor = model.newPredictor(translator)) { float[] embedding = predictor.predict("This is a text chunk."); // 保存 embedding 和对应的文本块 } - Java 嵌入模型库: 可以使用如 Deep Java Library 加载预训练的 Sentence Transformers 模型(如
- 向量索引: 将所有文档块的嵌入向量存储在一个高效的向量数据库中,以便进行快速的近似最近邻搜索。
- Java 向量数据库选项:
- Lucene (近似向量搜索): Apache Lucene 支持通过
KnnVectorField进行近似 KNN 搜索。你需要将向量存储为这种类型的字段。
// 示例伪代码 - 使用Lucene索引向量 Document doc = new Document(); doc.add(new KnnVectorField("vector", embedding, VectorSimilarityFunction.COSINE)); doc.add(new StoredField("text", chunkText)); indexWriter.addDocument(doc);- 专用向量数据库客户端: 如 Milvus、Qdrant、Pinecone 等通常提供 Java SDK。
// 示例伪代码 - 使用Milvus Java SDK插入向量 milvusClient.insert( InsertParam.newBuilder() .withCollectionName("knowledge_base") .addFieldValue("vector", embedding) .addFieldValue("text", chunkText) .build() ); - Lucene (近似向量搜索): Apache Lucene 支持通过
- Java 向量数据库选项:
2. 检索阶段
- 用户查询: 接收用户的输入问题/提示。
- 查询向量化: 使用与知识库文档块相同的嵌入模型,将用户查询也转换为一个嵌入向量。
float[] queryEmbedding = predictor.predict(userQuery); - 相似度搜索: 在向量索引/数据库中,执行近似最近邻搜索,查找与查询向量最相似的 K 个文档块向量。
- Lucene:
// 示例伪代码 - Lucene KNN搜索 KnnVectorQuery query = new KnnVectorQuery("vector", queryEmbedding, k); TopDocs topDocs = searcher.search(query, k); for (ScoreDoc scoreDoc : topDocs.scoreDocs) { Document hitDoc = searcher.doc(scoreDoc.doc); String retrievedText = hitDoc.get("text"); // 收集检索到的文本块 } - 专用向量数据库:
// 示例伪代码 - Milvus搜索 SearchParam searchParam = SearchParam.newBuilder() .withCollectionName("knowledge_base") .withFloatVectorFieldName("vector") .withFloatVectors(Arrays.asList(queryEmbedding)) .withTopK(k) .build(); SearchResults results = milvusClient.search(searchParam); for (QueryResult result : results.getResult()) { String retrievedText = result.getFieldValue("text", String.class); // 收集检索到的文本块 }
- Lucene:
- 结果聚合: 将检索到的 Top K 个文本块(上下文)组合起来,准备输入给 LLM。
3. 生成阶段
- 构造提示: 将用户的原始查询(
query)和检索到的相关上下文(context)按照特定的模板组合成一个新的提示(prompt),输入给 LLM。例如:Answer the question based on the following context: Context: {retrieved_context_1} ... {retrieved_context_k} Question: {user_query} Answer:String promptTemplate = "Answer the question based on the following context:\nContext: %s\nQuestion: %s\nAnswer:"; String context = String.join("\n", retrievedTexts); // 合并检索到的文本块 String finalPrompt = String.format(promptTemplate, context, userQuery); - 调用 LLM: 使用 Java 调用 LLM 的 API 或本地运行的模型来生成文本。
- API 调用 (如 OpenAI):
// 示例伪代码 - 调用OpenAI API (使用HttpClient) HttpRequest request = HttpRequest.newBuilder() .uri(URI.create("https://api.openai.com/v1/chat/completions")) .header("Authorization", "Bearer YOUR_API_KEY") .header("Content-Type", "application/json") .POST(HttpRequest.BodyPublishers.ofString( String.format("{\"model\": \"gpt-3.5-turbo\", \"messages\": [{\"role\": \"user\", \"content\": \"%s\"}]}", finalPrompt) )) .build(); HttpResponse<String> response = httpClient.send(request, HttpResponse.BodyHandlers.ofString()); // 解析response获取生成的文本 (response.body()) - 本地模型 (使用 DJL): 类似嵌入模型调用,但使用文本生成模型(如 GPT、Llama)的
Predictor和Translator。try (Predictor<String, String> generator = generatorModel.newPredictor(translator)) { String generatedText = generator.predict(finalPrompt); }
- API 调用 (如 OpenAI):
- 输出: 将 LLM 生成的文本作为最终答案返回给用户。
4. 整体流程整合
将上述步骤串联起来:
// 1. 用户输入
String userQuery = "Java中如何实现多线程?";
// 2. 检索阶段
float[] queryEmbedding = embeddingPredictor.predict(userQuery);
List<String> retrievedContexts = vectorIndex.searchTopK(queryEmbedding, 5); // 假设搜索Top 5
// 3. 构造提示
String context = String.join("\n\n", retrievedContexts);
String prompt = String.format("基于以下上下文回答问题:\n%s\n\n问题:%s\n回答:", context, userQuery);
// 4. 生成阶段
String answer = llmGenerator.generate(prompt); // 调用LLM生成
// 5. 输出结果
System.out.println("回答: " + answer);
依赖库概览
- 文本处理/IO: Java 标准库。
- 向量计算/嵌入模型: Deep Java Library (DJL)。
- 向量索引:
- 内置选项:Apache Lucene。
- 外部服务:Milvus, Qdrant, Pinecone 等的 Java SDK。
- LLM 调用:
- API 调用:Java HttpClient (标准库或 Apache HttpClient, OkHttp)。
- 本地模型:Deep Java Library (DJL)。
2671

被折叠的 条评论
为什么被折叠?



