国内快速下载huggingface中的模型文件

# 安装工具
pip install -U huggingface_hub
# 设置环境变量
export HF_ENDPOINT=https://hf-mirror.com
# 下载模型
huggingface-cli download --resume-download gpt2 --local-dir gpt2
# 下载数据
huggingface-cli download --repo-type dataset --resume-download wikitext --local-dir wikitext

更细节的可以查看之乎专栏这个文章

国内快速下载huggingface(镜像)上的模型和数据 - 知乎

### 替代Hugging Face的模型下载方案 如果希望避免使用 Hugging Face 进行模型下载,可以选择其他平台或工具来获取预训练模型。以下是几种可行的替代方案: #### 1. 使用国内镜像站点 一些国内的技术团队提供了针对国际知名模型库(如 Hugging Face)的镜像服务,这些站点通常会提供更稳定的访问体验以及更快的下载速度。例如,某些镜像站点专门收录了常见的开源模型,并支持直接下载[^4]。 - **优点**: - 提供中文文档和支持。 - 访问速度快,适合网络受限环境下的用户。 - 部分站点还额外优化了模型存储结构,便于后续加载和调优。 - **实现方式**: 用户只需进入目标镜像站首页,按照指引找到所需的大规模语言或其他类型的机器学习模型即可完成离线保存工作。 #### 2. 借助第三方框架转换GGUF格式文件 对于那些希望通过命令行快速启动特定AI任务的需求者来说,可以考虑利用`llama.cpp`这样的轻量级推理引擎。它允许使用者从头编译项目源码之后执行自定义配置好的参数化脚本从而驱动指定路径下已存在的`.gguf`扩展名的数据包作为输入素材参与运算过程[^1]。 ```bash git clone https://github.com/ggerganov/llama.cpp cd llama.cpp make ./main -m /path/to/model.gguf -p "your prompt here" ``` 上述流程展示了如何基于克隆下来的代码库制作专属版本的应用程序实例;其中涉及到了几个重要环节包括但不限于初始化开发环境准备阶段、实际构建可执行二进制文件部分还有最后一步即设置好对应位置上的预处理完毕后的神经网络权重矩阵集合体代表形式之一也就是所谓的量化压缩后产物——GGUF档案本身。 #### 3. 自建私有仓库托管资源 另一种长远来看更加自主可控的办法就是设立属于自己的内部资料管理系统用来长期维护积累下来的各种研究成果副本以防万一外部供应中断造成不可挽回损失风险发生的情况出现。这需要一定技术水平基础之上投入相应软硬件设施成本才能达成预期效果。 --- ### 注意事项 无论采用哪种途径都应当注意版权归属问题以免触犯法律法规底线同时也要考虑到安全性因素防止恶意篡改破坏原始数据完整性等问题的发生几率提升整体解决方案可靠性水平。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值