生如蚁,美如神

众里寻她千百度,蓦然回首,那人却在灯火阑珊处

faster rcnn在自己的数据集上训练

本文是一个总结,参考了网上的众多资料,汇集而成,以供自己后续参考。

一般说来,训练自己的数据,有两种方法:第一种就是将自己的数据集完全改造成VOC2007的形式,然后放到py-faster-rcnn/data 目录下,然后相应地改变相应模型的参数,比如种类等。 data目录下存放的数据如下:

VOCdevkit2007
	└── VOC2007
		├── Annotations
		│   └── *.xml
		│
		├── ImageSets
		│   └── Main
		│       ├── train.txt
		│       └── test.txt
		└── JPEGImages
    			└── *.jpg
这样做最省事。


第二种,基本上也是改造成VOC2007的形式,然后放到py-faster-rcnn/data 目录下,但是允许Annotations不按照xml的形式。可以是自己的形式

YOUR_DATASET_devkit
	└── data
		├── Annotations
		│   └── *.txt
		│
		├── ImageSets
		│       ├── train.txt
		│       └── test.txt
		└── JPEGImages
    			└── *.jpg or *.png

关于第二种,可以参考如下文章:

1. deboc/py-faster-rcnn  这个代码是py-faster rcnn的拷贝,实现了二分类模型。里面的data组织如下:

INRIA_Person_devkit/
|-- data/
    |-- Annotations/
         |-- *.txt (Annotation files)
    |-- Images/
         |-- *.png (Image files)
    |-- ImageSets/
         |-- train.txt
按照教程:https://github.com/deboc/py-faster-rcnn/blob/master/help/Readme.md 可以训练行人检测。

另外《Fast RCNN 训练自己数据集 (2修改数据读取接口)》 也实现了自己的数据读取。


下面重点说一下第一种。

具体的细节可以参考: http://blog.csdn.net/Gavin__Zhou/article/details/52052915

需要注意的是 根据文章<解决faster-rcnn中训练时assert(boxes[:,2]>=boxes[:,0]).all()的问题>   我们对lib/datasets/imdb.py,append_flipped_images()函数修改如下:

 def append_flipped_images(self):
        num_images = self.num_images
        widths = self._get_widths()
        for i in xrange(num_images):
            boxes = self.roidb[i]['boxes'].copy()
            oldx1 = boxes[:, 0].copy()
            oldx2 = boxes[:, 2].copy()
            boxes[:, 0] = widths[i] - oldx2 - 1
            boxes[:, 2] = widths[i] - oldx1 - 1
            for b in range(len(boxes)):
                if boxes[b][2]< boxes[b][0]:
                    boxes[b][0] = 0
            assert (boxes[:, 2] >= boxes[:, 0]).all()
            entry = {'boxes' : boxes,
                     'gt_overlaps' : self.roidb[i]['gt_overlaps'],
                     'gt_classes' : self.roidb[i]['gt_classes'],
                     'flipped' : True}
            self.roidb.append(entry)
        self._image_index = self._image_index * 2


我们说一说其他的,

其他参考文档:

1. 使用Faster-Rcnn进行目标检测(实践篇)

2. Faster rcnn 安装、训练、测试、调试

3. matlab训练样本集的制作

4.  制作自己的数据集用于faster-rcnn训练

5. 将数据集做成VOC2007格式用于Faster-RCNN训练   (很重要)

6. Faster-RCNN+ZF用自己的数据集训练模型(Python版本)

7. Training'R CNNs'of'various'velocities    训练faster rcnn的官方文档1

8. 训练faster rcnn的官方文档2

9. Faster-RCNN+ZF用自己的数据集训练模型(Matlab版本)

10. Py-faster-rcnn实现自己的数据train和demo  (很重要)


















阅读更多
版权声明:本文为博主原创文章,转载请注明原地址。 https://blog.csdn.net/xiamentingtao/article/details/78522299
个人分类: 深度学习
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭