faster rcnn在自己的数据集上训练

246人阅读 评论(0) 收藏 举报
分类:

本文是一个总结,参考了网上的众多资料,汇集而成,以供自己后续参考。

一般说来,训练自己的数据,有两种方法:第一种就是将自己的数据集完全改造成VOC2007的形式,然后放到py-faster-rcnn/data 目录下,然后相应地改变相应模型的参数,比如种类等。 data目录下存放的数据如下:

VOCdevkit2007
	└── VOC2007
		├── Annotations
		│   └── *.xml
		│
		├── ImageSets
		│   └── Main
		│       ├── train.txt
		│       └── test.txt
		└── JPEGImages
    			└── *.jpg
这样做最省事。


第二种,基本上也是改造成VOC2007的形式,然后放到py-faster-rcnn/data 目录下,但是允许Annotations不按照xml的形式。可以是自己的形式

YOUR_DATASET_devkit
	└── data
		├── Annotations
		│   └── *.txt
		│
		├── ImageSets
		│       ├── train.txt
		│       └── test.txt
		└── JPEGImages
    			└── *.jpg or *.png

关于第二种,可以参考如下文章:

1. deboc/py-faster-rcnn  这个代码是py-faster rcnn的拷贝,实现了二分类模型。里面的data组织如下:

INRIA_Person_devkit/
|-- data/
    |-- Annotations/
         |-- *.txt (Annotation files)
    |-- Images/
         |-- *.png (Image files)
    |-- ImageSets/
         |-- train.txt
按照教程:https://github.com/deboc/py-faster-rcnn/blob/master/help/Readme.md 可以训练行人检测。

另外《Fast RCNN 训练自己数据集 (2修改数据读取接口)》 也实现了自己的数据读取。


下面重点说一下第一种。

具体的细节可以参考: http://blog.csdn.net/Gavin__Zhou/article/details/52052915

需要注意的是 根据文章<解决faster-rcnn中训练时assert(boxes[:,2]>=boxes[:,0]).all()的问题>   我们对lib/datasets/imdb.py,append_flipped_images()函数修改如下:

 def append_flipped_images(self):
        num_images = self.num_images
        widths = self._get_widths()
        for i in xrange(num_images):
            boxes = self.roidb[i]['boxes'].copy()
            oldx1 = boxes[:, 0].copy()
            oldx2 = boxes[:, 2].copy()
            boxes[:, 0] = widths[i] - oldx2 - 1
            boxes[:, 2] = widths[i] - oldx1 - 1
            for b in range(len(boxes)):
                if boxes[b][2]< boxes[b][0]:
                    boxes[b][0] = 0
            assert (boxes[:, 2] >= boxes[:, 0]).all()
            entry = {'boxes' : boxes,
                     'gt_overlaps' : self.roidb[i]['gt_overlaps'],
                     'gt_classes' : self.roidb[i]['gt_classes'],
                     'flipped' : True}
            self.roidb.append(entry)
        self._image_index = self._image_index * 2


我们说一说其他的,

其他参考文档:

1. 使用Faster-Rcnn进行目标检测(实践篇)

2. Faster rcnn 安装、训练、测试、调试

3. matlab训练样本集的制作

4.  制作自己的数据集用于faster-rcnn训练

5. 将数据集做成VOC2007格式用于Faster-RCNN训练   (很重要)

6. Faster-RCNN+ZF用自己的数据集训练模型(Python版本)

7. Training'R CNNs'of'various'velocities    训练faster rcnn的官方文档1

8. 训练faster rcnn的官方文档2

9. Faster-RCNN+ZF用自己的数据集训练模型(Matlab版本)

10. Py-faster-rcnn实现自己的数据train和demo  (很重要)


















查看评论

Caffe学习系列——Faster-RCNN训练自己的数据集

2016-10-23 Deep Learning►Caffe Caffe学习系列——6使用Faster-RCNN进行目标检测 Contents 1. 配置与运行De...
  • CV_adventurer
  • CV_adventurer
  • 2017-05-29 23:38:09
  • 9782

Faster-RCNN训练自己的数据集

就目前我在了解到的资料来看,训练RCNN系列,一般有两种思路: 修改CNN的工程代码,适应自己的数据集格式 将自己的数据格式做成VOC2007形式的数据集 从工作量来看,无疑后者更容易一些,本文的思路...
  • GVFDBDF
  • GVFDBDF
  • 2016-08-15 19:34:11
  • 8447

Faster-Rcnn在windows下制作并训练自己的数据集

1.制作自己的数据集:(仿VOC2007数据集) 在文件夹 “faster_rcnn-master\制作自己的数据集” 下操作 :   ①图片批量重命名   ②手动框定目标,生成txt文件...
  • DoveJay
  • DoveJay
  • 2017-09-15 19:22:57
  • 1427

深度学习Caffe实战笔记(20)Windows平台 Faster-RCNN 训练自己的数据集

昨天晚上博主干到12点多,终于用了一晚上时间搞定了Faster-Rcnn训练自己的数据集,这篇博客介绍如何用faster_rcnn训练自己的数据集,前提是已经准备好了自己的数据和配置好了faster-...
  • gybheroin
  • gybheroin
  • 2017-05-21 09:53:47
  • 2940

tensorflow版本 Faster RCNN训练自己的数据集

0.前言 因为我用的是tensorflow的环境,所以Rbg的官方代码我是没有用的,采用的是github上tensorflow实现的faster rcnn,网址为:https://github.co...
  • yaoqi_isee
  • yaoqi_isee
  • 2018-02-04 20:11:15
  • 604

使用faster rcnn训练自己的数据-制作数据集

之前配置好了faster rcnn,生成了demo,激动死了,拿来试试自己的数据集,首先先制作要求的数据格式~...
  • juewu1993
  • juewu1993
  • 2017-01-29 15:15:21
  • 2592

Faster-RCNN+ZF制作自己的数据集和训练模型完整文件及教程(Matlab版本)

  • 2017年07月09日 11:06
  • 8.63MB
  • 下载

Faster RCNN 训练自己的数据集

Faster RCNN 训练自己的数据集
  • Apple__fly
  • Apple__fly
  • 2016-06-19 14:55:51
  • 2822

Faster-RCNN+ZF用自己的数据集训练模型(Python版本)

说明:本博文假设你已经做好了自己的数据集,该数据集格式和VOC2007相同。下面是训练前的一些修改。 (做数据集的过程可以看这里) Faster-RCNN源码下载地址: Matlab版本:http...
  • sinat_30071459
  • sinat_30071459
  • 2016-05-06 17:33:22
  • 89437

py-faster-rcnn+CPU训练自己的数据集(二)

感谢csdn各位大神博主 保存自用~~ 原文地址:http://blog.csdn.net/wjx2012yt/article/details/52197698 一、首先参照博客http://...
  • gaohuazhao
  • gaohuazhao
  • 2017-03-08 13:25:26
  • 2452
    个人资料
    持之以恒
    等级:
    访问量: 34万+
    积分: 4749
    排名: 7682
    个人网站
    最新评论