求圆和椭圆上任意角度的点的坐标

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/xiamentingtao/article/details/85804823

圆上任意角度的点的坐标

在这里插入图片描述

如上图,给定圆心(Cx,Cy),半径为R, 求θ\theta对应的点的坐标? 此处θ\theta是相对于水平轴的角度。

显然我们可以使用极坐标转换来求:
{px=Cx+Rcos(θ)py=Cy+Rsin(θ) \left\{\begin{matrix} px= Cx+Rcos(\theta) \\ py= Cy+Rsin(\theta) \end{matrix}\right.
注意如果以上竖直坐标系向下,此时变为图像的坐标系,即
在这里插入图片描述

结果变成:

{px=Cx+Rcos(θ)py=CyRsin(θ) \left\{\begin{matrix} px= Cx+Rcos(\theta) \\ py= Cy-Rsin(\theta) \end{matrix}\right.
仅仅是y变了。

椭圆上任意角度的点的坐标

首先我们先来考虑标准椭圆上任意角度的点的坐标,再进行推广。

在这里插入图片描述

已知主轴a(即椭圆箭头所指方向对应的轴),次轴b,求解与水平轴相交θ\theta对应的点的坐标?
{x2a2+y2b2=1yx=tan(θ) \left\{\begin{matrix} \frac{x^2}{a^2}+\frac{y^2}{b^2}&=&1 \\ \frac{y}{x}& =& \tan(\theta) \end{matrix}\right.
将上面的第二式带入第一式,可以求解得到:
x2=a2b2b2+a2tan2(θ) x^2=\frac{a^2b^2}{b^2+a^2\tan^2(\theta)}
这时我们考虑θ\theta的范围,可以得到:
(一). 0θ<pi/20\leq\theta<pi/2 或者 3pi2<θ2pi\frac{3*pi}{2}<\theta \leq 2*pi
{x=abb2+a2tan2(θ)y=abtan(θ)b2+a2tan2(θ) \left\{\begin{matrix} x=\frac{ab}{\sqrt{b^2+a^2\tan^2(\theta)}} \\ y=\frac{ab\tan(\theta)}{\sqrt{b^2+a^2\tan^2(\theta)}} \end{matrix}\right.
(二). pi/2<θ<3pi2pi/2<\theta<\frac{3*pi}{2}
{x=abb2+a2tan2(θ)y=abtan(θ)b2+a2tan2(θ) \left\{\begin{matrix} x=-\frac{ab}{\sqrt{b^2+a^2\tan^2(\theta)}} \\ y=-\frac{ab\tan(\theta)}{\sqrt{b^2+a^2\tan^2(\theta)}} \end{matrix}\right.
(三). θ=pi/2\theta = pi/2
{x=0y=b \left\{\begin{matrix} x=0 \\ y=b \end{matrix}\right.
(四). θ=3pi2\theta = \frac{3*pi}{2}
{x=0y=b \left\{\begin{matrix} x=0 \\ y=-b \end{matrix}\right.
再考虑一般情况下的椭圆,如下:

在这里插入图片描述

如上θ[0,2pi]\theta\in[0,2*pi]是相对于主轴的角度,α[pi,pi]\alpha\in[-pi,pi], 不过我们一般仅仅考虑α[0,pi]\alpha\in[0,pi],求θ\theta对应的点的坐标?

基本思路就是先转换成标准椭圆,再应用标准椭圆下的结果。

显然我们需要将以上椭圆的中心移到原点,再绕原点旋转α-\alpha ,即顺时针旋转α\alpha,即:
(xy)=R((XY)(XcYc)) \begin{pmatrix} x\\ y \end{pmatrix}=R(\begin{pmatrix} X\\ Y \end{pmatrix}-\begin{pmatrix} X_c\\Y_c \end{pmatrix})
其中
R=(cos(α)sin(α)sin(α)cos(α))=(cos(α)sin(α)sin(α)cos(α)) R=\begin{pmatrix} cos(-\alpha) &-sin(-\alpha) \\ sin(-\alpha) & cos(-\alpha) \end{pmatrix}=\begin{pmatrix} cos(\alpha) &sin(\alpha) \\ -sin(\alpha) & cos(\alpha) \end{pmatrix}
因此
(XY)=R1(xy)+(XcYc) \begin{pmatrix} X\\ Y \end{pmatrix} =R^{-1}\begin{pmatrix} x\\ y \end{pmatrix}+\begin{pmatrix} X_c\\Y_c \end{pmatrix}
其中
R1=RT=(cos(α)sin(α)sin(α)cos(α))                           () R^{-1}=R^{T}=\begin{pmatrix} cos(\alpha) &-sin(\alpha) \\ sin(\alpha) & cos(\alpha) \end{pmatrix}~~~~~~~~~~~~~~~~~~~~~~~~~~~(\bigstar)
这样将前面(xy)\begin{pmatrix} x\\ y \end{pmatrix} 的四个结果应用过来,即得到倾斜的椭圆上的对应角度的点的坐标。

扩展:

  1. 如果以上的角度是相对于水平轴的角度,则对应的椭圆上的点的坐标如何求呢?
    答: 其实很简单,只需要:
    θ={θα+2pi,θ<αθα,θα \theta'=\left\{\begin{matrix} \theta-\alpha+2*pi, & \theta<\alpha \\ \theta-\alpha, & \theta \geq \alpha \end{matrix}\right.
    θ\theta'替换以上标准椭圆下的θ\theta即可。
  2. 如果竖直坐标轴为竖直向下的,即为图像坐标系下的椭圆,那么如何求对应的角度?
    答:
    需要做两方面的改变即可:
    {ααyy \left\{\begin{matrix} \alpha\rightarrow -\alpha\\ y\rightarrow -y \end{matrix}\right.
    第一行改变\bigstar出的α\alpha. 第二行改变标准椭圆下的y值的符号。

matlab代码

demo.m
################################
center_x=282;
center_y=263;
phi=pi/6;
R1=141;
R2=62;
%DrawEllipse([center_x,center_y],R1,R2,phi);
axis equal;
hold on;
set(gca,'ydir','reverse')
for angle=linspace(0,3*pi/2,360)
   [ px,py ] = get_points_ellipse(center_x, center_y,phi,R1,R2, angle );
   plot(px,py,'ro');
   hold on;
end
axis([0,500,0,500])
function [ px,py ] = get_points_ellipse(center_x, center_y,phi,R1,R2, angle )
% 求椭圆某个角度上的点的坐标。
%https://math.stackexchange.com/questions/22064/calculating-a-point-that-lies-on-an-ellipse-given-an-angle
%https://blog.csdn.net/xiamentingtao/article/details/54934467

%https://stackoverflow.com/questions/17762077/how-to-find-the-point-on-ellipse-given-the-angle
%另一种解法  从极坐标的角度出发。

% 椭圆参数  圆心 (center_x.center_y) 角度 phi(-pi,pi),实际上仅考虑(0,pi) 沿着角度的主轴半径R1,另一主轴对应的半径R2
% 求相对于水平轴x轴上angle(基于0-2pi之间)上对应的点坐标。
% 注意求解的坐标系为:水平向右为x轴,竖直向上为y轴。 如果竖直向下为y轴,则下面的y应该变换成-y, phi变成-phi

%先将斜的椭圆转正,并平移到原点。方法就是平移到中心,且旋转-phi角度,再应用标准椭圆求取点。
if(angle<phi)
    theta = angle-phi+2*pi;  %想对于主轴的角度
else
    theta = angle-phi;
end
% theta为相对于主轴的角度
alpha = -phi;    %与竖直的轴有关,如果是竖直向上,则变为正phi
% 先计算标准椭圆 x^2/R1^2+y^2/R2^2=1  与 直线 y/x=tan(angle)的交点。
assert(angle>=0 && angle<=2*pi);
if(theta==pi/2)
    x=0;
    y=R2;
elseif(theta==pi*3/2)
    x=0;
    y=-R2;
elseif(theta>pi/2 && theta<pi*3/2)
    x=-R1*R2/sqrt(R2^2+R1^2*tan(theta)^2);
    y=-R1*R2*tan(theta)/sqrt(R2^2+R1^2*tan(theta)^2);
else
    x=R1*R2/sqrt(R2^2+R1^2*tan(theta)^2);
    y=R1*R2*tan(theta)/sqrt(R2^2+R1^2*tan(theta)^2); 
end
 y=-y;    %与竖直的轴有关,如果是竖直向上,则变为正y
% 将以上结果转换回去
px= cos(alpha)*x-sin(alpha)*y+center_x;
py=sin(alpha)*x+cos(alpha)*y+center_y;

end

function DrawEllipse(C,a,b,alpha)
% DRAWELLIPSE plots an ellipse
%   DrawEllipse(C,a,b,alpha) plots ellipse with center C, semiaxis a
%   and b and angle alpha between a and the x-axis

s=sin(alpha); c=cos(alpha);
Q =[c -s; s c]; theta=[0:0.02:2*pi];
u=diag(C)*ones(2,length(theta)) + Q*[a*cos(theta); b*sin(theta)];
plot(u(1,:),u(2,:));
hold on;
plot(C(1),C(2),'+');

显示结果,起点对应着角度为0。
在这里插入图片描述

另一种基于极坐标变换的高效实现【转载】

转载: https://blog.csdn.net/he_zhidan/article/details/81347426
根据“圆心角”弧度(函数会将圆心角转成离心角),获取斜椭圆上的点坐标。ptCenter,椭圆中心;a椭圆长轴长度;b,椭圆短轴长度;radian,点于椭圆长轴夹角的弧度;dChangZhouAngle,长轴弧度

CDoublePoint2d GetPointOnEllipse(const CDoublePoint2d& ptCenter, double a, double b, double radian, double dChangZhouAngle)
{
const double dLiXin = atan2(asin(radian), bcos(radian));//离心角
double x = a*cos(dLiXin)cos(dChangZhouAngle) - bsin(dLiXin)sin(dChangZhouAngle) + ptCenter.x;
double y = a
cos(dLiXin)sin(dChangZhouAngle) + bsin(dLiXin)*cos(dChangZhouAngle) + ptCenter.y;
return CDoublePoint2d(x, y);
}

问题:

一,为什么不用atan?

答:atan的范围是[-π/2,π/2],atan2的范围是(-π,π]。前者只能表示两个象限,后者可以表示4个。

二,为什么不atan2(a*tan(radian),b)?

答:这样写,和用atan的效果一样。

参考文献

  1. https://math.stackexchange.com/questions/22064/calculating-a-point-that-lies-on-an-ellipse-given-an-angle (主要参考这个)
  2. https://stackoverflow.com/questions/17762077/how-to-find-the-point-on-ellipse-given-the-angle (这里有一个从极坐标变换角度新的推导)
  3. https://blog.csdn.net/xiamentingtao/article/details/54934467
展开阅读全文

没有更多推荐了,返回首页