LEARNING DYNAMICS OF LLM FINETUNING【论文阅读笔记】

LEARNING DYNAMICS OF LLM FINETUNING

一句话总结

作者将LLM的学习动力机制拆解成AKG三项,并分别观察了SFT和DPO训练过程中​​正梯度信号​​和​​负梯度信号​​的变化及其带来的影响,并得到以下结论:

  1. ​​SFT通过梯度相似性间接提升无关回答置信度​​;
  2. ​​DPO负梯度回传会引发confidence(softmax score) 向模型训练前confidence最高的token聚集:DPO中正样本与 负样本之间的margin虽然在增大,但正样本的confidence上涨幅度没有训练前模型最中意的答案的confidence涨得快

吐槽一下,这篇非常不适合LLM伴读和粗读,因为符号多,符号的描述写的很松散,图表的讲解非常碎(一张图的解释可能会横跨两个subsection),我开始用LLM伴读给我弄的非常混乱,自己粗读发现跳过一两段可能一个符号什么意思就不知道了。最后老老实实一行一行读。虽然作者的工作非常详实,但是……只能说这种写法不坑老实人吧。

↓↓↓这里先补充一下Learning Dynamic的分析逻辑↓↓

学习动力机制(Learning Dynamic)指什么?

Learning Dynamic,简单来说,就是研究每次模型经过一个batch的数据训练后,参数发生了变化,这个变化如何影响模型的表现。具体来说,哪些方面变好了?哪些方面变差了?

用来描述哪些方面变好,哪些方面变差的工具就是先做一个观察数据集,这个数据集是静态的。

观察一个batch的训练后,观察数据集里的<哪些样本>的预测结果有<什么样>的变化,就是研究Learning Dynamic。

为了衔接论文里的公式,这里把上面学习动力机制研究的公式写出来

第一步:定义,参数更新对特定样本的输出的影响
f ( x ; θ ) = π ( z ( x ; θ ) ) f(x;θ)=π(z(x;θ)) f(x;θ)=π(z(x;θ)) π π π是最后一层的softmax函数, x o x_o xo指的是观察集的样本。
—>参数更新 Δ θ Δθ Δθ 会导致输入 x x x的输出变化是
Δ f ( x o ; θ ) ≈ ∇ θ f ( x o ; θ ) ⋅ Δ θ Δf(x_o;θ)≈∇_θf(x_o;θ)⋅Δθ Δf(xo;θ)θf(xo;θ)Δθ

第二步:展开 第一项

∇ θ f ( x o ; θ ) = ∂ π ( z ( x o ; θ ) ) ∂ z ⏟ softmax雅可比  J π ( z ) ⋅ ∇ θ z ( x o ; θ ) ⏟ logits的梯度 \nabla_\theta f(x_o;\theta) = \underbrace{\frac{\partial \pi(z(x_o;\theta))}{\partial z}}_{\text{softmax雅可比 } J_\pi(z)} \cdot \underbrace{\nabla_\theta z(x_o;\theta)}_{\text{logits的梯度}} θf(xo;θ)=softmax雅可比 Jπ(z) zπ(z(xo;θ))logits的梯度 θz(xo;θ)

第三步: Δ θ Δθ Δθ 把梯度替换成 当批次样本 { x 1 , . . . , x i , . . . x n } \{x_1,...,x_i,...x_n\} {x1,...,xi,...xn} 带来的梯度

Δ θ Δθ Δθ 替换成 Δ θ = − η ∇ θ L ( θ ) Δθ=−η∇ _{θ}L(θ) Δθ=ηθL(θ) 即学习率乘以梯度

∇ θ L ( θ ) = 1 n ∑ i = 1 n ( π ( z ( x i ; θ ) ) − y i ) ⊤ ⋅ ∇ θ z ( x i ; θ ) ⏟ 通过链式法则: ∂ L ∂ z ⋅ ∂ z ∂ θ \nabla_\theta L(\theta) = \frac{1}{n} \sum_{i=1}^n \underbrace{\left( \pi(z(x_i;\theta)) - y_i \right)^\top \cdot \nabla_\theta z(x_i;\theta)}_{\text{通过链式法则:} \frac{\partial L}{\partial z} \cdot \frac{\partial z}{\partial \theta}} θL(θ)=n1i=1n通过链式法则:zLθz (π(z(xi;θ))yi)θz(xi;θ)

第四步:两个展开式带回源式
Δ f ( x ; θ ) ≈ − η n ∑ i = 1 n [ J π ( z ( x ; θ ) ) ⋅ ∇ θ z ( x ; θ ) ] ⋅ [ ( π ( z ( x i ; θ ) ) − y i ) ⊤ ⋅ ∇ θ z ( x i ; θ ) ] \Delta f(x;\theta) \approx -\frac{\eta}{n} \sum_{i=1}^n \left[ J_\pi(z(x;\theta)) \cdot \nabla_\theta z(x;\theta) \right] \cdot \left[ \left( \pi(z(x_i;\theta)) - y_i \right)^\top \cdot \nabla_\theta z(x_i;\theta) \right] Δf(x;θ)nηi=1n[Jπ(z(x;θ))θz(x;θ)][(π(z(xi;θ))yi)θz(xi;θ)]
第五步:把gradient乘积写成NTK项
Δ f ( x ; θ ) ≈ − η n J π ( z ( x ; θ ) ) ∑ i = 1 n ⟨ ∇ θ z ( x ; θ ) , ∇ θ z ( x i ; θ ) ⟩ ⏟ NTK项  K ( x , x i ) ⋅ ( π ( z ( x i ; θ ) ) − y i ) Δf(x;θ) ≈ -\frac{η}{n} J_π(z(x;θ)) \sum_{i=1}^n \underbrace{\left\langle \nabla_θ z(x;θ), \nabla_θ z(x_i;θ) \right\rangle}_{\text{NTK项 } \mathbf{K}(x, x_i)} \cdot \left( π(z(x_i;θ)) - y_i \right) Δf(x;θ)nηJπ(z(x;θ))i=1nNTK K(x,xi) θz(x;θ),θz(xi;θ)(π(z(xi;θ))yi)
最终
Δ f ( x o ; θ ) ≈ − η n ⋅ J π ( z ( x o ; θ ) ) ⏟ softmax非线性效应 ⋅ ∑ i = 1 n K ( x o , x i ) ⏟ 样本相关性 ⋅ ( π ( z ( x i ; θ ) ) − y i ) ⏟ 训练样本误差 \Delta f(x_o;\theta) \approx -\frac{\eta}{n} \cdot \underbrace{J_\pi(z(x_o;\theta))}_{\text{softmax非线性效应}} \cdot \sum_{i=1}^n \underbrace{\mathbf{K}(x_o, x_i)}_{\text{样本相关性}} \cdot \underbrace{\left( \pi(z(x_i;\theta)) - y_i \right)}_{\text{训练样本误差}} Δf(xo;θ)nηsoftmax非线性效应 Jπ(z(xo;θ))i=1n样本相关性 K(xo,xi)训练样本误差 (π(z(xi;θ))yi)
最终这个式子里面的第一项、第二项和第三项分别对应了文章公式3的 AKG。
其中K的部分,代表了在函数空间中的样本相关性(不是两个样本乍看之下像不像,而是通过梯度核(NTK)映射之后像不像。文章在分析SFT时会一直用这个角度
G是训练样本误差带来的影响,这个在DPO分析中还会被拆成正负两项(因为DPO用的是margin)

关键细节与结论

1. G项给SFT带来的是训练Token的confidence上升

这里的confidence指的是Token的输出概率(softmax之后的score)
在这里插入图片描述
看上图中左侧第一张图,灰色是本步骤之前的这个样本的词表上的所有Score的曲线。蓝色就是这一步训练之后,词表上所有词的Score的变化。
这是很符合直觉的,也是论文的前菜.(但是这张图特别不好,把后面要说的东西的分析也放这儿了,看着很乱。大概是因为投稿篇幅的关系,作者压进来了)

2. SFT中 出现在训练集里的y,会在挂羊头卖狗肉的情况下也很自信

在这里插入图片描述
文中figure3的这张图,展示的是
π ( y u + ∣ x u ) π(y_{u^+}|x_u) π(yu+xu) -虚线, π ( y j ∣ x u ) π(y_{j}|x_u) π(yjxu)-蓝色线, 和 π ( y t e s t + ∣ x u ) π(y_{test^+}|x_u) π(ytest+xu)-橙色线 在训练过程中的变化。( π π π是softmax函数,这三条线都对应的是模型分)
其中 π ( y u + ∣ x u ) π(y_{u^+}|x_u) π(yu+xu) 就是训练集中样本A 对应的答案A的概率;
π ( y j ∣ x u ) π(y_{j}|x_u) π(yjxu)是训练集中样本A作为context(或者说prompt),后面接样本B的正确答案y_j的时候的score
π ( y t e s t + ∣ x u ) π(y_{test^+}|x_u) π(ytest+xu) 是训练集中样本A作为context,后面接测试集中某个样本的正确答案的时候的score。
如果按照我们的希望🔽

给定样本A的prompt,样本B的正确答案作为output的时候,这个答案是错的,他的confidence不应该上涨。
但在作者的实验记录下,这一数值上涨了。这就是作者认为SFT中一部分幻觉的来源

3. K项给SFT带来的是意思相近和格式相近的答案的confidence的上升

作者在分析的时候使用的是DPO数据集(Antropic-HH 和UltraFeedback),尽管他在训练SFT的时候仅适用了 DPO数据集中的prefer样本 y u + y_{u^+} yu+,但在分析中他同时分析了less prefer(负样本) y u − y_{u^-} yu
下图中, y u + y_{u^+} yu+ 是DPO样本集中<正样本>
y u − y_{u^-} yu 是DPO样本集中<负样本>
y g p t s + y_{gpts^+} ygpts+ 是用GPT针对DPO样本集中<正样本>做的同意改写样本
y g p t s − y_{gpts^-} ygpts 是用GPT针对DPO样本集中<负样本>做的同意改写样本
y h u m y_{hum} yhum 是随机的一个句子(跟训练样本无关)
y j ≠ u + y_{{j≠u}^+} yj=u+ 是训练集中另一个样本的<正样本>
y t e s t + y_{{test}^+} ytest+ 是测试集中某个样本的<正样本>
y r n d y_{{rnd}} yrnd 是随机英文词组成的字符串(连句子都不是)
在这里插入图片描述
基于以上符号意义,观察上图,蓝色部分confidence上涨,橙色就是下降。上图中左侧多个列都显示,每训练25步 [ x u ; y u ] [x_u;y_u] [xu;yu]就观察一次,发现一些语义或者格式相似( y g p t s + y_{gpts^+} ygpts+)的样本的confidence也上涨了。
同时乱序的字符串( y h u m y_{hum} yhum y r n d y_{rnd} yrnd)训练的时候,其他有正常语义的答案的confidence都会降低。因为,用K来衡量的距离跟这些乱序的答案的距离是很大的,Learning Dynamic的角度上看这些confidence也确实应该下降。
》最炸裂的其实是这个图的最后一列 DPO这列,这列引入的是下面一个结论

4. DPO中的负梯度会给所有未被训练的答案打负分

作者实验中发现,如果下图左1所示,在用DPO训练很多个epoch的过程中,根据训练样本正确答案改写的正样本 y g p t s + y_{gpts^+} ygpts+ (语义相同)和 y g p t f + y_{gptf^+} ygptf+ (格式相同)的confidence都在持续下降。
这是与我们的直觉相反的。
在这里插入图片描述
同时,上图左2显示,不仅DPO中正样本的改写样本的confidence在持续下滑,负样本的confidence也在持续下滑(仔细看数轴,这组斜率更大)
看上图的左4,在训练中的正样本和负样本的confidence的变化是:正样本的confidence先上涨后下滑,到第四个epoch,连正样本的confidence都比训练前要低了;而负样本的confidence全程咔咔下跌。
那正负样本的confidence都跌了,谁涨了呢?(毕竟是用softmax转换过的score,有人跌就有人涨)
答:看第左5,图中的黑线是模型在DPO之前(如果按照RL的说法,可以说是reference model)最prefer的答案的概率。

整个训练过程,reference model中概率最高的token的概率涨的最猛,比训练的正样本y还猛。

5. 这种错位的虹吸效应的源头是DPO的负梯度影响

文中的大部分拆解都沿用了经典的拆分方案。DPO上做了一个变化,把G分成了正负两部分。
在这里插入图片描述
这里有个比较讨厌的东西 χ u − χ^-_u χu 这个符号其实是附录中下面高亮部分的意思,就是 x u x_u xu是一样的,y不一样。这么表示其实有点讨厌,一来是符号不在公式附近(在附录B),二来这么写其实挺容易让人误解的。
在这里插入图片描述
前面这种奇怪的现象主要来自于负梯度的回传,也就是 G − G^- G的部分。
在附录中,作者还展示了reference model对 y u + y_{u^+} yu+分布形状不同的时候 ,DPO的负梯度带来的影响差别。
在这里插入图片描述
上面这个分析有个需要注意的点,就是这个DPO是off-policy的(虽然我们说DPO的时候通常就是off-policy的),即完全是静态的样本集,正样本和负样本都不是通过play逐步变化的。

那如果是on-policy的,也就是随着模型训练,概率分布有变化的时候(或者 y u + = y u ∗ y_{u^+}=y_{u^*} yu+=yu y u − = y u ∗ y_{u^-}=y_{u^*} yu=yu u ∗ u^* u指的就是reference model最中意的答案。)负梯度带来的影响是什么样的?
灰线是训练前,蓝线是训练后
在这里插入图片描述
看图的第三行,在原先分布是有几个特殊token的概率较高的情况下, y u − y_{u^-} yu直接作用到reference模型概率最高的token上时,其他概率相对较高的token的概率被直接抬起来很多。
看图的第四行,在原先分布是有几个特殊token的概率较高的情况下, y u − y_{u^-} yu直接作用到reference模型概率很低的token时,原先概率最高的token的概率被大大提升了。而不是所有概率高的token的概率都提升了,而是效用集中到一个token上。

评价

多于1个epoch问题就会逐渐凸显

在作者原文的大部分实验图中,都能看到,尽管DPO带来的挤压效应在多个epoch之后就显得非常病态。在实际训练过程中,其实也是这样的,不管是SFT还是DPO,在已知–>“全参数微调可以让模型在一个epoch之内完成记忆”<–这个前提下,训练超过1个epoch都要非常小心。而且在准备样本的过程中也要考虑,样本实际重复的情况来算实际epoch数。

定点制作DPO数据效果会很好

我这里提供的是论文作者论述以外,一个自己之前实践上的经验:制作两个只有关键知识点不同,其他描述完全相同的样本,比如“上海迪士尼上午9点开园”和“上海迪士尼上午10点开园”,这个会很大程度上提高模型的知识矫正(更新)效率。比unlearning还快。

完全静态的DPO样本集,会很快打乱SFT中已经训练好的模式

同样是跟作者的认知比较像的,如果先训练SFT把想要的模式注入到LLM里,然后用DPO来训,前面SFT的胜利成果可能在很小的样本量下就不行了。原因就在于SFT注入的本身就是一个模型原来并不prefer的格式。而且注入的点可能覆盖面并不够大(小样本的时候)

### 大型语言模型微调方法、教程及最佳实践 #### 微调的重要性 大型语言模型LLM)通过预训练获得广泛的语言理解能力,但在特定领域或任务上表现可能不如预期。为了提高性能并适应具体应用场景,通常需要对这些模型进行微调[^3]。 #### 常见的微调策略 1. **全量参数更新** 这种方式会调整整个网络中的所有权重值,在资源允许的情况下可以取得较好的效果。不过由于涉及大量计算资源消耗较大,因此只适用于小型数据集或者拥有强大硬件支持的情况。 2. **部分层冻结** 只解冻最后几层甚至单一层来进行优化操作,其余保持不变。这种方法既能保留原有知识结构又能针对新任务快速收敛,是目前较为流行的方案之一。 3. **低秩适配器 (Low-Rank Adapter)** 向现有架构中引入额外的小规模子网作为辅助模块参与前向传播过程而不改变原主体设计;仅需训练少量新增加出来的参数即可实现良好迁移学习成果的同时极大降低了再训练成本开销。 4. **提示词注入(Prompt Tuning)** 不修改任何内部组件而是依靠外部输入来引导输出方向完成定制化需求满足的任务转换机制。它具有简单易行的特点特别适合处理那些难以获取标注样本的问题场景。 ```python from transformers import AutoModelForSequenceClassification, Trainer, TrainingArguments model_name = "bert-base-uncased" num_labels = 2 # 加载预训练模型 model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=num_labels) training_args = TrainingArguments( output_dir='./results', learning_rate=2e-5, per_device_train_batch_size=8, per_device_eval_batch_size=8, num_train_epochs=3, weight_decay=0.01, ) trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, eval_dataset=val_dataset ) trainer.train() ``` 上述代码展示了如何利用Hugging Face Transformers库加载BERT模型并对之实施分类任务上的监督式微调流程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值