在我们的日常生活中,无论是工作还是个人事务,表单填写几乎无处不在。表单是我们与系统、机构或服务交互的重要工具。但手填表单又费时费力。用AI重新定义表单处理,通过自然语言处理(NLP)、大模型API(LLM)和自动化工具,我们可以彻底改变表单填写的方式。
📽️视频showtime📽️
一、技术架构的三重奏
这个demo基于JBoltAI开发框架,主要运用了 Text2JSON、大模型 API(LLM)以及表单智能填写技术。
-
大模型API(LLM):对输入文本进行语义理解和信息提取。例如,当用户输入一段描述客户信息的文本时,系统能够识别出姓名、电话、地址等关键字段。
-
Text2JSON引擎:通过语义分割算法将非结构化文本解构成语义单元,转换成结构化的 JSON 格式数据。
-
表单模板匹配 :每个表单都有固定的字段结构,比如“姓名”、“身份证号”、“邮箱”等。根据预设的模板,将提取的信息与对应的字段进行匹配。
让AI能力集成变得像搭积木般简单。
二、应用场景解析
1.保险理赔场景
例如:报案人描述"昨晚23:15在朝阳区东三环主路发生追尾,对方全责"。提取事故时间、地点、责任认定等关键字段填入表单存储。
2.企业内部流程审批表单
例如:费用报销、项目申请等等。员工输入“我在 [具体日期] 因 [业务原因] 出差,产生了交通费用 [X] 元,住宿费用 [Y] 元,餐饮费用 [Z] 元,相关票据已附上。” 提取日期、业务原因、各项费用金额等关键信息,填入对应的表单中。
3.政府热线场景
例如:市民反馈"XX小区3号楼电梯故障已2天,多次报修未处理",提取事件类型、地址、处理时限等 填入表单。
4.人才招聘场景
例如:候选人描述"5年JAVA开发经验,主导过日活百万级系统架构设计",提取工作年限、技术能力、项目经验等填入表单。
表单识别的能力只是众多场景流程中最基础的一部分,它可以被嵌套到各种流程中使用,将不规则的数据识别为需要的结构化数据进行存储,才能发挥数据的价值。
三、JBoltAI智能表单识别与JBoltAI文本结构化的区别
1.JBoltAI智能表单识别
优势 :
高效便捷 :针对固定表单模板,能够快速完成信息提取和填充,适合高频次的表单填写任务。
准确性高 :由于字段明确且有预设规则,提取结果通常更精准。
易于集成 :可以直接与现有的表单系统对接,无缝嵌入业务流程。
局限性 :
依赖模板 :需要提前定义表单模板,灵活性较低。
适用范围有限 :主要适用于表单填写场景,难以应对复杂或多样化的文本内容。
2.JBoltAI文本结构化
优势 :
灵活性强 :无需预设模板,能够适应多种文本类型和领域。
泛化能力强 :支持动态字段识别,适合处理未知或复杂的文本内容。
广泛应用 :输出的结构化数据可用于多种下游任务,如数据分析、知识图谱构建等。
局限性 :
精度依赖于算法 :对于复杂文本,可能需要额外的规则或人工校验以提高准确性。
开发成本较高 :相较于表单识别,文本结构化需要更复杂的算法设计和训练。
四、结语
这个demo只是智能表单革命的开始。当AI遇上业务场景,产品经理的角色正在从需求翻译者进化为价值创造者。借助JBoltAI这样的开发框架,我们可以像搭积木一样快速构建AI智能应用,将创新想法快速转化为商业价值。