数据血缘系列(9)—— 数据血缘分析框架之数据全生命周期管理

大家好,我是独孤风。在当今数据驱动的商业环境中,数据治理成为企业成功的关键因素之一,而数据血缘正是数据治理成功的一个关键。

本文我们详细探讨下数据血缘分析框架的核心,数据全生命周期管理。

本文为《数据血缘分析原理与实践 》一书读书笔记,部分观点参考自书中原文,如需更详细的了解学习,请大家支持原作者的辛苦付出。

本文思维导图如下所示:

556e3a7a9cbcfb99cd851163b4fb17dd.png

数据是现代企业和组织的重要资产,是驱动业务决策和创新的关键。有效的数据治理确保数据在其整个生命周期中得到适当管理和利用,提升数据的价值,并确保合规性和安全性。本文将深入探讨数据全生命周期管理的各个阶段,涵盖数据生产、数据加工、数据传输、数据消费和数据失效,以及数据全生命周期与数据血缘的关系。

数据生产:从无到有的过程

数据生命周期的起点是数据生产阶段,即数据从无到有的过程。数据生产可以通过多种方式进行,例如传感器收集的物联网数据、用户在网站上生成的交易数据、企业内部系统产生的运营数据等。数据生产不仅涉及数据的收集,还包括初步处理,以确保数据的准确性和完整性。例如,传感器数据需要经过验证和清洗,以去除噪音和错误数据。数据生产阶段的质量直接影响到后续数据加工和分析的效果,因此需要严格控制数据生成和初步处理环节,确保数据的真实性和可靠性。

数据加工:将原始数据转化为有价值的信息

数据加工是将原始数据转化为有价值信息的过程。在这一阶段,数据经过清洗、整合和分析,变得更有意义和可操作。数据清洗是指去除数据中的错误、重复和无关信息;数据整合是将来自不同来源的数据汇集在一起,形成一个统一的数据集;数据分析则利用各种统计方法和机器学习算法,从数据中提取有用的洞察。例如,通过数据分析,可以发现用户行为模式、预测市场趋势、优化运营策略等。数据加工的目标是将大量的原始数据转化为支持决策的有用信息,提高数据的利用价值和决策准确性。

数据传输:确保数据在传输过程中的安全性和完整性

数据传输是指数据从生产和加工阶段传输到使用阶段的过程。数据传输不仅涉及数据的物理传输,还包括数据在网络环境中的传输安全性和完整性。为了确保数据在传输过程中不被篡改或泄露,需要采用多种安全措施,如数据加密、访问控制和安全传输协议。数据加密可以保护数据在传输过程中的机密性,防止未经授权的访问;访问控制确保只有授权用户才能访问和操作数据;安全传输协议(如HTTPS、SSL等)可以防止数据在传输过程中被截获和篡改。数据传输的目标是确保数据在传输过程中的安全性和完整性,为后续的数据消费提供可靠保障。

f291b54a5bef365af1ff1c4eae2386ea.png

数据消费:利用数据实现商业价值

数据消费是数据生命周期中最关键的环节,它标志着数据价值的真正实现。在这一阶段,数据被各种用户和系统利用,支持业务决策、优化运营和提升客户体验。数据消费可以分为基础数据消费和高级数据消费。基础数据消费是指数据的常规使用,如生成报告和报表,监控运营指标等;高级数据消费则包括高级分析、预测模型和智能决策支持等。为了确保数据消费的安全性和合规性,数据需要进行分级管理。根据数据的敏感性和重要性,可以将数据分为四个级别:一级公开数据、二级内部数据、三级机密数据和四级绝密数据。不同级别的数据在访问控制、使用权限和保护措施上有不同的要求,确保数据在使用过程中不被滥用或泄露。

数据失效:管理数据的归档与销毁

数据失效是指数据过期或不再具有使用价值的阶段。在这一阶段,数据需要按照既定的保留政策进行归档或销毁。根据会计档案管理办法,数据的保管期限可以分为永久保管、30年、10年和5年四个级别。对于需要长期保存的数据,如重要的历史记录和法律文件,应进行永久保管;对于一般性的业务数据,可以根据其重要性和使用频率,设置适当的保管期限。在数据失效阶段,需要确保数据的安全销毁,防止敏感信息泄露。数据血缘(Data Lineage)在这一阶段起着重要作用,它帮助追踪数据的来源、流向和变更记录,确保在数据归档和销毁过程中不遗漏任何关键数据,保证数据治理的透明性和合规性。

数据血缘(Data Lineage)在数据全生命周期管理中起着至关重要的作用,它帮助追踪和记录数据的来源、流向和变更记录,确保数据在整个生命周期中的透明性和可追溯性。通过数据血缘,可以了解数据从生成到消费的整个过程,识别出数据在各个阶段的变化和流转情况。这不仅有助于数据质量管理和数据治理,还能提高数据分析的准确性和可靠性,确保数据在不同阶段的一致性和完整性。此外,数据血缘对于数据合规性和审计要求也具有重要意义,它能够提供详细的数据使用和变更记录,支持合规审查和风险管理。在数据失效阶段,数据血缘帮助确定哪些数据需要保留或销毁,确保数据管理的合规性和安全性。总之,数据血缘是数据全生命周期管理的核心组成部分,通过提供透明和可追溯的数据流动和变更记录,保障了数据在整个生命周期中的质量、安全和合规性。这种紧密的关系使得数据治理更加高效和可靠,推动了企业在数字化时代的持续发展和创新。

这样,数据血缘的核心框架数据全生命周期管理我们已经了解了。下一章我们学习更具体的数据血缘三个实体,数据库血缘、数据表血缘、字段血缘。

我们下一章再见!

8534287c53ba337269ec75a9b924078c.jpeg

在互联网发展浪潮中,数据对于企业的价值是非常大的,怎么管理数据,以及快速挖掘数据价值,共享数据价值,急需一套解决方案,在数据开发中,核心数据模型的变化是相对缓慢的,同时,对数据进行维护的工作量也非常大;但业务创新的速度、对数据提出的需求的变化,是非常快速的。数据中台的出现,就是为了弥补数据开发和应用开发之间,由于开发速度不匹配,出现的响应力跟不上的问题。数据中台解决的问题,包括:效率问题、协作问题、能力问题,数据中台是聚合和治理跨域数据,将数据抽象封装成服务,提供给前台以业务价值的逻辑概念。本课程基于真实企业数据中台建设架构进行讲解,带大家构建数据中台,通过学习完本课程可以节省你摸索的时间,节省企业成本,提高企业开发效率。课程包含几大模块:数据管理数据接入管理数据质量管理数据质量报告、数据管理数据中台实战应用等,对于数据中台涉及到的业务以及技术进行详尽的讲解。本课程包含的技术:开发工具为:IDEA、WebStormFlink1.9.0ClickHouseHadoop2.6.0Hbase1.0.0Kafka2.1.0Hive1.0.0HDFS、MapReduceZookeeper、AtlasSpringBoot2.0.8.RELEASESpring MybatisMySQLVue.js、NodejsElemntUI课程亮点:1.与企业接轨、真实工业界产品2.方位管理、治理数据3.大数据以及业务系统数据与企业接轨4.支撑业务系统数据使用以及共享5.集成IDE可视化查询6.集成元数据管理数据血缘追溯7.ClickHouse高性能列式存储数据库8.数据中台项目应用实战9.Flink+ClickHouse技术架构10.微服务架构技术SpringBoot技术架构11.后端+大数据技术栈+前端可视化12.提供方位的技术落地指导支持13.课程凝聚讲师多年实战经验,经验直接复制14.掌握部内容能进行大数据用户平台的设计和实操 企业一线架构师讲授,代码在老师的指导下企业可以复用,提供企业解决方案。  版权归作者所有,盗版将进行法律维权。  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大数据流动

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值