本文系转载,出处:浅析GPU计算——cuda编程
本系列博客配备github代码,本小节代码见:https://github.com/qixuxiang/cuda_zero_to_one/blob/master/run_gpu_or_cpu.cu
CUDA编程模型基础
在给出CUDA的编程实例之前,这里先对CUDA编程模型中的一些概念及基础知识做个简单介绍。CUDA编程模型是一个异构模型,需要CPU和GPU协同工作。在CUDA中,host和device是两个重要的概念,我们用host指代CPU及其内存,而用device指代GPU及其内存。CUDA程序中既包含host程序,又包含device程序,它们分别在CPU和GPU上运行。同时,host与device之间可以进行通信,这样它们之间可以进行数据拷贝。典型的CUDA程序的执行流程如下:
- 分配host内存,并进行数据初始化;
- 分配device内存,并从host将数据拷贝到device上;
- 调用CUDA的核函数在device上完成指定的运算;
- 将device上的运算结果拷贝到host上;
- 释放device和host上分配的内存。
关键字
之前我们讲解过,CPU是整个计算机的核心,它的主要工作是负责调度各种资源,包括其自身的计算资源以及GPU的计算计算资源。比如一个浮点数相乘逻辑,理论上我们可以让其在CPU上执行,也可以在GPU上执行。那这段逻辑到底是在哪个器件上执行的呢?cuda将决定权交给了程序员,我们可以在函数前增加修饰词来指定。
一般来说,我们只需要2个修饰词就够了,但是cuda却提供了3个——2个执行位置为GPU。这儿要引入一个“调用位置”的概念。父函数调用子函数时,父函数可能运行于CPU或者GPU,相应的子函数也可能运行于CPU或者GPU,但是这绝不是一个2*2的组合关系。因为GPU作为CPU的计算组件,不可以调度CPU去做事,所以不存在父函数运行于GPU,而子函数运行于CPU的情况。
由于GPU实际上是异构模型,所以需要区分host和device上的代码,在CUDA中是通过函数类型限定词开区别host和device上的函数,主要的三个函数类型限定词如下:
__global__
:在device上执行,从host中调用(一些特定的GPU也可以从device上调用),返回类型必须是void,不支持可变参数参数,不能成为类成员函数。注意用__global__
定义的kernel
是异步的,这意味着host不会等待kernel执行完就执行下一步。__device__
:在device上执行,单仅可以从device中调用,不可以和__global__
同时用。__host__
:在host上执行,仅可以从host上调用,一般省略不写,不可以和__global__
同时用,但可和__device__
,此时函数会在device和host都编译。
关键字 | 调用位置 | 执行位置 |
---|---|---|
__host__ | CPU | CPU |
__global__ | CPU | GPU |
__device__ | GPU | GPU |
注意
__global__
描述的函数就是“被CPU调用,在GPU上运行的代码”,同时它也打通了__host__
和__device__
修饰的函数。__global__
既不能和__host__
关键词一起用,也不能和__device__
一起用。__global__
修饰的函数既是void
返回类型,且是异步调用的。假设该函数有返回值,当函数返回时,接受返回值的变量可能已经被销毁了,所以设计其有返回值也没太多意义。
如果一段代码既需要运行于CPU,也要运行于GPU,怎么办?难道要写两次?当然不用,我们可以同时使用__host__
和__device__
修饰。这样编译器就会帮我们生成两份代码逻辑。
#include "cuda.h"
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <stdio.h>
__host__ __device__ int run_on_cpu_or_gpu() {
return 1;
}
__global__ void run_on_gpu() {
printf("run_on_cpu_or_gpu GPU: %d\n", run_on_cpu_or_gpu());
}
int main() {
printf("run_on_cpu_or_gpu CPU: %d\n", run_on_cpu_or_gpu());
run_on_gpu<<<1, 1>>>();
cudaDeviceReset();
return 0;
}
/*
run_on_cpu_or_gpu CPU: 1
run_on_cpu_or_gpu GPU: 1
*/
对于上面的__global__
修饰函数中<<<1, 1>>>
,我们会在下一节cuda从入门到精通(三)之核函数详细讲到,这里你只需要把<<<1, 1>>>
看成是一种并行计算的手段即可。
上面提过, __global__
修饰的函数既是void
返回类型,且是异步异步调用的。我们可以改写上面代码验证下:
#include "cuda.h"
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <stdio.h>
__host__ __device__ int run_on_cpu_or_gpu() {
return 1;
}
__global__ void run_on_gpu() {
printf("run_on_cpu_or_gpu GPU: %d\n", run_on_cpu_or_gpu());
}
int main() {
printf("run_on_cpu_or_gpu CPU: %d\n", run_on_cpu_or_gpu());
run_on_gpu<<<1, 1>>>();
printf("will end\n");
cudaDeviceReset();
return 0;
}
如果上述代码都是同步执行的,那么最后一句输出应该是will end
,然而实际输出却是:
run_on_cpu_or_gpu CPU: 1
will end
run_on_cpu_or_gpu GPU: 1
可见__global__
修饰的函数的确是被异步执行的。
还有人会问,上面main函数怎么没有用修饰符修饰?cuda编程规定如果没有使用修饰符修饰的默认就是__host__
类型。这种设计让大家熟悉的规则成为默认的规则,可以让更多第三方代码不用修改就直接被cuda编译器编译使用。
cuda是一个GPU编程环境,所以它对__device__
修饰的函数进行了比较多的优化。比如它会根据它的规则,让某个__device__
修饰函数成为内联函数(inline)。这些规则是程序员不可控,但是如果我们的确对是否内联有需求,cuda也提供了方式:使用__noinline__
修饰函数不进行内联优化;使用 __forceinline__
修饰函数强制进行内联优化,当然这两种修饰符不能同时使用。