Dify中创建知识库操作和实现过程

一.创建知识库操作

选择知识库选项卡,然后点击创建知识库。

1.方式一:先创建知识库,然后上传文件

创建一个空知识库。

输入知识库名称,然后创建。

2.方式二:直接上传文件,然后创建默认知识库

除此之外也可以直接上传文本文件,然后系统会创建一个默认知识库。直接上传"QA文档.txt"后会自动创建默认知识库名称和知识库描述等信息:

二.创建知识库实现

1.方式一:先创建知识库,然后上传文件

创建空白知识库的post方法:

class DatasetListApi(Resource):          @setup_required       @login_required       @account_initialization_required       def get(self):           ......           return response, 200          @setup_required  # 确保系统已经初始化       @login_required  # 确保用户已经登录       @account_initialization_required  # 确保用户已经初始化       def post(self):           parser = reqparse.RequestParser()  # 创建请求参数解析器           parser.add_argument('name', nullable=False, required=True,                               help='type is required. Name must be between 1 to 40 characters.',                               type=_validate_name)  # 添加请求参数           parser.add_argument('indexing_technique', type=str, location='json',                               choices=Dataset.INDEXING_TECHNIQUE_LIST,                               nullable=True,                               help='Invalid indexing technique.')  # 添加请求参数           args = parser.parse_args()  # 解析请求参数              # The role of the current user in the ta table must be admin or owner           if not current_user.is_admin_or_owner:               raise Forbidden()              try:               dataset = DatasetService.create_empty_dataset(  # 创建空白知识库                   tenant_id=current_user.current_tenant_id,  # 租户ID                   name=args['name'],  # 名称                   indexing_technique=args['indexing_technique'],  # 索引技术                   account=current_user  # 用户               )           except services.errors.dataset.DatasetNameDuplicateError:  # 数据集名称重复               raise DatasetNameDuplicateError()  # 数据集名称重复错误              return marshal(dataset, dataset_detail_fields), 201  # 返回数据集详情   

调用http://localhost:5001/console/api/datasets接口:

{       "id": "cbd8a746-a9ab-4d79-8337-99d4ac989691",       "name": "\u6d4b\u8bd5\u77e5\u8bc6\u5e93",       "description": null,       "provider": "vendor",       "permission": "only_me",       "data_source_type": null,       "indexing_technique": null,       "app_count": 0,       "document_count": 0,       "word_count": 0,       "created_by": "c17d706d-6418-4ca0-9ba5-34b43bb7e32c",       "created_at": 1719337063,       "updated_by": "c17d706d-6418-4ca0-9ba5-34b43bb7e32c",       "updated_at": 1719337063,       "embedding_model": null,       "embedding_model_provider": null,       "embedding_available": null,       "retrieval_model_dict": {           "search_method": "semantic_search",           "reranking_enable": false,           "reranking_model": {               "reranking_provider_name": "",               "reranking_model_name": ""           },           "top_k": 2,           "score_threshold_enabled": false,           "score_threshold": null       },       "tags": []   }   

实际调用的create_empty_dataset方法:

创建空白知识库中,数据存入数据表datasets中。

2.方式二:直接上传文件,然后创建默认知识库

(1)save_document_without_dataset_id

DatasetInitApi类是一个资源类,它继承自Resource类。在这个类中,定义了一个post方法,这个方法对应HTTP的POST请求。

post方法的主要功能是初始化一个数据集。首先检查用户是否已经设置、登录并完成了初始化。然后,它会检查用户是否有足够的权限来创建一个新的向量空间。

post方法中,首先通过reqparse.RequestParser()解析请求中的参数,包括索引技术(indexing_technique)、数据源(data_source)、处理规则(process_rule)、文档形式(doc_form)、文档语言(doc_language)和检索模型(retrieval_model)。

如果索引技术是’high_quality’,则会尝试获取默认的嵌入模型实例。如果获取失败,会抛出相应的错误。然后,它会验证请求参数是否有效。如果参数有效,它会调用DocumentService.save_document_without_dataset_id方法来创建一个新的数据集并在其中保存文档。

最后,它会返回一个包含新创建的数据集、文档和批次信息的响应。

save_document_without_dataset_id方法的主要功能是在没有给定数据集ID的情况下保存文档。这个方法主要用于创建一个新的数据集,并在其中保存文档,返回新创建的数据集、保存的文档和批次信息。以下是该方法的主要步骤:

首先,它会检查是否启用了计费功能。如果启用了计费,它会计算上传的文档数量,并检查是否超过了批量上传的限制或者文档上传的配额。

如果文档的索引技术是’high_quality’,它会尝试获取默认的嵌入模型实例,并获取数据集集合绑定和检索模型。

然后,它会创建一个新的数据集,包括租户ID、数据源类型、索引技术、创建者、嵌入模型、嵌入模型提供者、集合绑定ID和检索模型等信息。

接着,它会调用save_document_with_dataset_id方法来在新创建的数据集中保存文档。

最后,它会更新数据集的名称和描述,并提交数据库事务。

以上是在datasets数据表中插入的一条知识库记录。

(2)save_document_with_dataset_id

通过调试得到document_data一个示例数据如下所示:

{           'indexing_technique': 'high_quality',           'data_source': {                   'type': 'upload_file',                   'info_list': {                           'data_source_type': 'upload_file',                           'file_info_list': {                                   'file_ids': ['6f393937-d0ec-41b3-a6cb-56f38081eb94']                           }                   }           },           'process_rule': {                   'rules': {},                   'mode': 'automatic'           },           'duplicate': True,           'original_document_id': None,           'doc_form': 'text_model',           'doc_language': 'Chinese',           'retrieval_model': {                   'search_method': 'semantic_search',                   'reranking_enable': False,                   'reranking_model': {                           'reranking_provider_name': '',                           'reranking_model_name': ''                   },                   'top_k': 2,                   'score_threshold_enabled': False,                   'score_threshold': None           }   }   

save_document_with_dataset_id方法的主要功能是在给定数据集ID的情况下保存文档。这个方法主要用于在已存在的数据集中创建或更新文档,返回保存的文档和批次信息。以下是该方法的主要步骤:

首先,它会检查是否启用了计费功能。如果启用了计费,它会计算上传的文档数量,并检查是否超过了批量上传的限制或者文档上传的配额。

如果数据集是空的,它会更新数据集的数据源类型和索引技术。

如果是更新文档,它会调用update_document_with_dataset_id方法来更新文档。如果是新建文档,它会保存处理规则,然后根据数据源类型(如上传文件或导入notion)创建文档。

最后,它会触发异步任务来处理文档索引。

以上是在documents数据表中插入的一条文件记录。

三.知识库文档操作

在知识库中添加文档:

数据源可以是导入已有文本,同步自Notion内容,同步自Web站点(暂未实现)。文档类型已支持 TXT、 MARKDOWN、 PDF、 HTML、 XLSX、 XLS、 DOCX、 CSV,每个文档不超过 15MB。

上传文档后,可以分段设置、索引方式、检索设置。分段设置包括自动分段与清洗和自定义2种情况。索引方式包括高质量和经济2种情况。检索设置包括向量检索、全文检索和混合检索3种情况。

TopK表示用于筛选与用户问题相似度最高的文本片段。系统同时会根据选用模型上下文窗口大小动态调整分段数量。Score阈值表示用于设置文本片段筛选的相似度阈值。

文档上传后就可以进行Embedding处理。

点击"前往文档"可以查看文档的处理信息。

点击文档可查看文档的段落、元数据(需要自行设置)和技术参数信息。

四.上传文档实现

调用接口http://localhost:5001/console/api/files/upload

{       "id": "d0bd9b1e-49f4-4bfa-ac7f-24e5d9ac1030",       "name": "疲劳自救手册:用认知行为疗法找回元气满满的自己.html",       "size": 292535,  # 0.28MB       "extension": "html",       "mime_type": "text/html",       "created_by": "c17d706d-6418-4ca0-9ba5-34b43bb7e32c",       "created_at": 1719341969   }   

源码位置:dify\api\controllers\console\datasets\file.py

源码位置:dify\api\services\file_service.py

存储到数据表upload_files中的记录如下:

id:d0bd9b1e-49f4-4bfa-ac7f-24e5d9ac1030   tenant_id:f3789322-26d3-473a-82ea-f51c77face65   storage_type:local   key:upload_files/f3789322-26d3-473a-82ea-f51c77face65/4e7b05eb-fa25-48ec-ae37-9088cb265e64.html   name:疲劳自救手册:用认知行为疗法找回元气满满的自己.html   size:292535   extension:html   mime_type:text/html   created_by:c17d706d-6418-4ca0-9ba5-34b43bb7e32c   created_at:2024-06-26 02:59:29.144151   used:false   used_by:   used_at:   hash:d6c38b0743dd6edfa95dac39fed49f4b8e75e79ee8bc47617b1f1e8b519d3d7f   created_by_role:account   

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员二飞

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值