一.创建知识库操作
选择知识库选项卡,然后点击创建知识库。
1.方式一:先创建知识库,然后上传文件
创建一个空知识库。
输入知识库名称,然后创建。
2.方式二:直接上传文件,然后创建默认知识库
除此之外也可以直接上传文本文件,然后系统会创建一个默认知识库。直接上传"QA文档.txt"后会自动创建默认知识库名称和知识库描述等信息:
二.创建知识库实现
1.方式一:先创建知识库,然后上传文件
创建空白知识库的post方法:
class DatasetListApi(Resource): @setup_required @login_required @account_initialization_required def get(self): ...... return response, 200 @setup_required # 确保系统已经初始化 @login_required # 确保用户已经登录 @account_initialization_required # 确保用户已经初始化 def post(self): parser = reqparse.RequestParser() # 创建请求参数解析器 parser.add_argument('name', nullable=False, required=True, help='type is required. Name must be between 1 to 40 characters.', type=_validate_name) # 添加请求参数 parser.add_argument('indexing_technique', type=str, location='json', choices=Dataset.INDEXING_TECHNIQUE_LIST, nullable=True, help='Invalid indexing technique.') # 添加请求参数 args = parser.parse_args() # 解析请求参数 # The role of the current user in the ta table must be admin or owner if not current_user.is_admin_or_owner: raise Forbidden() try: dataset = DatasetService.create_empty_dataset( # 创建空白知识库 tenant_id=current_user.current_tenant_id, # 租户ID name=args['name'], # 名称 indexing_technique=args['indexing_technique'], # 索引技术 account=current_user # 用户 ) except services.errors.dataset.DatasetNameDuplicateError: # 数据集名称重复 raise DatasetNameDuplicateError() # 数据集名称重复错误 return marshal(dataset, dataset_detail_fields), 201 # 返回数据集详情
调用http://localhost:5001/console/api/datasets
接口:
{ "id": "cbd8a746-a9ab-4d79-8337-99d4ac989691", "name": "\u6d4b\u8bd5\u77e5\u8bc6\u5e93", "description": null, "provider": "vendor", "permission": "only_me", "data_source_type": null, "indexing_technique": null, "app_count": 0, "document_count": 0, "word_count": 0, "created_by": "c17d706d-6418-4ca0-9ba5-34b43bb7e32c", "created_at": 1719337063, "updated_by": "c17d706d-6418-4ca0-9ba5-34b43bb7e32c", "updated_at": 1719337063, "embedding_model": null, "embedding_model_provider": null, "embedding_available": null, "retrieval_model_dict": { "search_method": "semantic_search", "reranking_enable": false, "reranking_model": { "reranking_provider_name": "", "reranking_model_name": "" }, "top_k": 2, "score_threshold_enabled": false, "score_threshold": null }, "tags": [] }
实际调用的create_empty_dataset方法:
创建空白知识库中,数据存入数据表datasets中。
2.方式二:直接上传文件,然后创建默认知识库
(1)save_document_without_dataset_id
DatasetInitApi
类是一个资源类,它继承自Resource
类。在这个类中,定义了一个post
方法,这个方法对应HTTP的POST请求。
post
方法的主要功能是初始化一个数据集。首先检查用户是否已经设置、登录并完成了初始化。然后,它会检查用户是否有足够的权限来创建一个新的向量空间。
在post
方法中,首先通过reqparse.RequestParser()
解析请求中的参数,包括索引技术(indexing_technique
)、数据源(data_source
)、处理规则(process_rule
)、文档形式(doc_form
)、文档语言(doc_language
)和检索模型(retrieval_model
)。
如果索引技术是’high_quality’,则会尝试获取默认的嵌入模型实例。如果获取失败,会抛出相应的错误。然后,它会验证请求参数是否有效。如果参数有效,它会调用DocumentService.save_document_without_dataset_id
方法来创建一个新的数据集并在其中保存文档。
最后,它会返回一个包含新创建的数据集、文档和批次信息的响应。
save_document_without_dataset_id
方法的主要功能是在没有给定数据集ID的情况下保存文档。这个方法主要用于创建一个新的数据集,并在其中保存文档,返回新创建的数据集、保存的文档和批次信息。以下是该方法的主要步骤:
首先,它会检查是否启用了计费功能。如果启用了计费,它会计算上传的文档数量,并检查是否超过了批量上传的限制或者文档上传的配额。
如果文档的索引技术是’high_quality’,它会尝试获取默认的嵌入模型实例,并获取数据集集合绑定和检索模型。
然后,它会创建一个新的数据集,包括租户ID、数据源类型、索引技术、创建者、嵌入模型、嵌入模型提供者、集合绑定ID和检索模型等信息。
接着,它会调用save_document_with_dataset_id
方法来在新创建的数据集中保存文档。
最后,它会更新数据集的名称和描述,并提交数据库事务。
以上是在datasets数据表中插入的一条知识库记录。
(2)save_document_with_dataset_id
通过调试得到document_data
一个示例数据如下所示:
{ 'indexing_technique': 'high_quality', 'data_source': { 'type': 'upload_file', 'info_list': { 'data_source_type': 'upload_file', 'file_info_list': { 'file_ids': ['6f393937-d0ec-41b3-a6cb-56f38081eb94'] } } }, 'process_rule': { 'rules': {}, 'mode': 'automatic' }, 'duplicate': True, 'original_document_id': None, 'doc_form': 'text_model', 'doc_language': 'Chinese', 'retrieval_model': { 'search_method': 'semantic_search', 'reranking_enable': False, 'reranking_model': { 'reranking_provider_name': '', 'reranking_model_name': '' }, 'top_k': 2, 'score_threshold_enabled': False, 'score_threshold': None } }
save_document_with_dataset_id
方法的主要功能是在给定数据集ID的情况下保存文档。这个方法主要用于在已存在的数据集中创建或更新文档,返回保存的文档和批次信息。以下是该方法的主要步骤:
首先,它会检查是否启用了计费功能。如果启用了计费,它会计算上传的文档数量,并检查是否超过了批量上传的限制或者文档上传的配额。
如果数据集是空的,它会更新数据集的数据源类型和索引技术。
如果是更新文档,它会调用update_document_with_dataset_id
方法来更新文档。如果是新建文档,它会保存处理规则,然后根据数据源类型(如上传文件或导入notion)创建文档。
最后,它会触发异步任务来处理文档索引。
以上是在documents数据表中插入的一条文件记录。
三.知识库文档操作
在知识库中添加文档:
数据源可以是导入已有文本,同步自Notion内容,同步自Web站点(暂未实现)。文档类型已支持 TXT、 MARKDOWN、 PDF、 HTML、 XLSX、 XLS、 DOCX、 CSV,每个文档不超过 15MB。
上传文档后,可以分段设置、索引方式、检索设置。分段设置包括自动分段与清洗和自定义2种情况。索引方式包括高质量和经济2种情况。检索设置包括向量检索、全文检索和混合检索3种情况。
TopK表示用于筛选与用户问题相似度最高的文本片段。系统同时会根据选用模型上下文窗口大小动态调整分段数量。Score阈值表示用于设置文本片段筛选的相似度阈值。
文档上传后就可以进行Embedding处理。
点击"前往文档"可以查看文档的处理信息。
点击文档可查看文档的段落、元数据(需要自行设置)和技术参数信息。
四.上传文档实现
调用接口http://localhost:5001/console/api/files/upload
:
{ "id": "d0bd9b1e-49f4-4bfa-ac7f-24e5d9ac1030", "name": "疲劳自救手册:用认知行为疗法找回元气满满的自己.html", "size": 292535, # 0.28MB "extension": "html", "mime_type": "text/html", "created_by": "c17d706d-6418-4ca0-9ba5-34b43bb7e32c", "created_at": 1719341969 }
源码位置:dify\api\controllers\console\datasets\file.py
源码位置:dify\api\services\file_service.py
存储到数据表upload_files
中的记录如下:
id:d0bd9b1e-49f4-4bfa-ac7f-24e5d9ac1030 tenant_id:f3789322-26d3-473a-82ea-f51c77face65 storage_type:local key:upload_files/f3789322-26d3-473a-82ea-f51c77face65/4e7b05eb-fa25-48ec-ae37-9088cb265e64.html name:疲劳自救手册:用认知行为疗法找回元气满满的自己.html size:292535 extension:html mime_type:text/html created_by:c17d706d-6418-4ca0-9ba5-34b43bb7e32c created_at:2024-06-26 02:59:29.144151 used:false used_by: used_at: hash:d6c38b0743dd6edfa95dac39fed49f4b8e75e79ee8bc47617b1f1e8b519d3d7f created_by_role:account
读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费
】🆓