一些事故
案例一:自动驾驶车发现行人了没有及时提醒驾驶员(驾驶员在刷视频),也没有刹车(系统并非闭环,制动被截断)
案例二:SUV无人车自身重心偏上,顶上加上了一堆重量级的传感器之后,重心进一步上移,导致在急转弯或者剐蹭时发生侧翻。
(安全是第一天条)
无人驾驶的研发流程
软件在环
软件仿真
硬件在环
车辆在环
在一个封闭场地里,将开发的功能运行在车辆上
司机在环
司机会对无人车的表现做出评判
自动驾驶汽车的硬件系统
驾驶员检测
摄像头+生物电
摄像头
判断驾驶员的疲劳状态
生物电传感器
主要在方向盘上
- 是否脱离方向盘
- 驾驶员情绪
黑匣子:记录车辆行进过程中所有的信息和状态
自动驾驶传感器
激光雷达
除以2:两束激光束之间是有角度的,为了防止有物体刚好就在这两个角度时间,除以二,减少漏检。
那么0.4°的分辨率下,在100米的时候就能检测到一个人
0.1°以下,400米外就能检测到人。
检测到不一定以为着就能识别出来。
0.4°的分辨率下激光雷达有效的感知距离是50米。
未来传感器
离不开传感器融合,比如激光雷达和摄像头都属于光学传感器,核心零件和电路都十分相似。
将两者前端融合在一起(RGB + XYZ),可以直接输出 颜色+点云 信息。
再传输到后端进行计算、处理。
一家美国公司:Aeye,它的iRADAR便做到了这一点。
计算单元
需要满足:
- 车规:防电磁干扰、振动:
- ISO26262:GPU FPGA等都需要做一些冗余设计,防止单点故障。(MCU:当整个系统都失效了的时候,该微处理器能够让整个汽车刹停下来)
整体设计:集中式设计
优点:利于代码的迭代
缺点:体积巨大而且笨重
卡槽式设计
优点:利于硬件的更新和拓展
对于集中式的改进(优化):将一些功能分解出来
比如这里的sensor box单独处理数据融合(将数据时间同步)
芯片制作流程
当算法固定以后,就可以设计专用芯片运作该算法。
自动驾驶的线控过程
(control by wire):车辆的控制是由一系列的命令实现。
刹车分两种:气刹(火车/卡车)、液压
3.0是完全按照自动驾驶的要求来做的,同时包含冗余和备份。
CAN总线。
每一种车型、车次的CAN总线协议都是不一样的。