GLM - 4 - Plus:智谱 AI 最新推出的大型基座模型


引言

在当今人工智能飞速发展的时代,各种先进的大模型不断涌现,为我们的生活和工作带来了前所未有的变革。今天,让我们一同走进智谱 AI 推出的 GLM-4-Plus 大模型,深入了解它的独特魅力和强大功能。

一、GLM-4-Plus 简介

智谱 GLM 团队重磅发布了新一代基座大模型 ——GLM - 4 - Plus。作为智谱全自研 GLM 大模型的全新版本,GLM - 4 - Plus 充分彰显了智谱 AI 在通用人工智能领域的深度耕耘,有力地推动了大模型技术的独立自主创新。GLM - 4 - Plus 是对以往模型持续优化与创新的结晶。它巧妙地融合了先进的算法以及海量的数据,其目标是为用户呈上更为智能、更为高效的语言处理服务。
在这里插入图片描述

二、GLM-4-Plus 的技术优势

1. 卓越的语言能力

语言理解与指令遵循::GLM-4-Plus 在语言理解方面表现出色,能够准确理解用户输入的各种复杂指令。无论是日常的交流、专业领域的问题,还是具有模糊性的表述,它都能迅速捕捉到关键信息,并给出准确的回应。这使得用户在与模型交互时,能够感受到流畅和自然的对话体验。
在这里插入图片描述

长文本处理:在处理长文本时,GLM-4-Plus 展现出了强大的能力。它可以有效地分析长篇文章、书籍等内容,提取关键信息,总结主旨大意。与其他模型相比,它在长文本处理方面的性能得到了全面提升,能够更好地应对大规模文本数据的处理需求。
在这里插入图片描述

语言文本能力与国际水平相当:GLM-4-Plus 的语言文本能力与国际先进水平的模型如 GPT4O 及具有一定参数量的 Llama3.1 相当。这意味着它在全球人工智能领域中具有较强的竞争力,能够为用户提供高质量的语言服务。
在这里插入图片描述

2. 多模态交互能力

  • 从单一模态到多模态的跨越:智谱 AI 在模型发展过程中实现了从单一文字模态到多模态交互的重要突破。GLM-4-Plus 不仅能够处理文本信息,还可以与图像、视频等非文本数据进行交互。这一能力的拓展为用户带来了全新的体验,使其能够在更广泛的场景中应用。

  • 图像与视频理解:搭配其图像/视频理解模型 GLM-4V-Plus,GLM-4-Plus 可以对图像和视频内容进行深入理解和分析。例如,它可以识别图像中的物体、场景,理解视频中的情节、动作等,并能够根据用户的需求对图像或视频内容进行准确的描述和解释。这种多模态交互能力为多媒体内容的处理和分析提供了强大的工具

3. 强大的推理能力

  • PPO 提升推理表现:GLM-4-Plus 利用 PPO(Proximal Policy Optimization,近端策略优化)算法,有效提升了模型在推理方面的表现。它在处理数学、代码算法题等复杂逻辑问题时,能够更加准确地分析问题,找出解题思路,并给出正确的答案。
  • 反映人类偏好:通过优化策略,GLM-4-Plus 能够更好地反映人类偏好。这意味着它在生成回答时,会更加符合人类的思维方式和语言习惯,使得用户更容易理解和接受其输出结果

三、GLM-4-Plus 的功能特点

1. 丰富的知识储备

  • 综合知识与时事热点:GLM-4-Plus 拥有丰富的知识储备,涵盖了各种领域的综合知识以及时事热点。无论是历史、文化、科学、技术等方面的问题,还是当前社会热点事件的分析,它都能提供详细而准确的信息。例如,当用户询问关于某一历史事件的背景和影响时,它可以从多个角度进行深入分析,展现出全面的历史观和深刻的洞察力。

  • 深入的问题分析:对于一些复杂的问题,GLM-4-Plus 能够进行深入的分析和探讨。它不会仅仅停留在表面的回答,而是会挖掘问题的本质,提供有深度的见解。比如在探讨一些社会现象时,它可以从经济、文化、社会心理等多个层面进行剖析,帮助用户更好地理解问题的根源和发展趋势。

2. 准确的语言理解

  • 中文语言特点与文化内涵:GLM-4-Plus 对中文的语言特点和文化内涵有着深刻的理解。它能够准确把握中文的语法结构、词汇含义以及语义关系,对于一些具有中文特色的表达方式,如成语、俗语、歇后语等,都能正确理解并运用。同时,它还能理解中文背后的文化内涵,在处理与中国文化相关的问题时,能够给出符合文化背景的回答。

  • 复杂语义的解读:对于一些容易引起混淆或具有特殊语义的表述,GLM-4-Plus 能够准确解读。无论是反义、隐喻、象征等修辞手法,还是一些具有歧义的句子,它都能通过上下文分析和语义推理,理解用户的真正意图,并给出恰当的回答。例如,在解读文学作品中的隐喻时,它可以结合作品的时代背景、作者的创作意图等因素,深入剖析隐喻的含义和作用。

3. 代码辅助能力

  • 代码理解与应用:GLM-4-Plus 在代码理解与应用方面表现出色。它可以准确理解各种编程语言的代码功能,无论是常见的 Python、Java、C++等语言,还是一些较为小众的编程语言。并且,它能够根据用户的需求编写测试程序、查找并修复代码中的 bug、自动续写代码等,为程序员提供了强大的辅助工具。

  • 提高编程效率:对于程序员来说,GLM-4-Plus 可以大大提高编程效率。在开发过程中,遇到一些复杂的逻辑问题或代码实现困难时,程序员可以向 GLM-4-Plus 寻求帮助,它可以提供思路和代码示例,帮助程序员更快地解决问题。同时,它还可以对代码进行优化和改进,提高代码的质量和性能。

四、GLM-4-Plus 的应用场景

1. 智能客服

  • 高效回答用户咨询:在企业中,GLM-4-Plus 可以作为智能客服的核心技术。它能够快速准确地回答用户的咨询问题,无论是产品信息、售后服务还是常见问题解答,都能提供及时有效的帮助。通过自然语言处理技术,它可以理解用户的问题意图,从知识库中提取相关信息,并以清晰明了的方式回答用户。

  • 提升客户服务质量:智能客服的应用不仅可以提高服务效率,还能提升客户服务质量。GLM-4-Plus 可以 24 小时不间断地为用户提供服务,避免了人工客服可能出现的等待时间过长、服务不及时等问题。同时,它的回答准确性和一致性也能够提高用户的满意度,增强企业的竞争力。

2. 内容创作

  • 文章写作与文案创作:对于创作者来说,GLM-4-Plus 是一个得力的助手。它可以帮助创作者进行文章写作、文案创作、故事编写等。用户只需提供主题或关键信息,GLM-4-Plus 就可以根据这些信息生成一篇结构完整、逻辑清晰的文章或文案。它还可以提供创意和灵感,帮助创作者突破思维局限,创作出更具吸引力的作品。

  • 丰富创作素材:此外,GLM-4-Plus 还可以为创作者提供丰富的创作素材。它可以根据用户的需求生成各种场景、人物、情节等内容,为创作者的创作提供更多的可能性。同时,它还可以对创作内容进行语法检查、拼写纠错等,提高创作的质量和效率。

3. 教育辅助

  • 学生学习助手:在教育领域,GLM-4-Plus 可以成为学生的学习助手。它可以帮助学生解答学习过程中遇到的问题,如数学题解答、语文阅读理解分析、英语语法学习等。学生可以通过与
    GLM-4-Plus 交互,获得个性化的学习指导和建议,提高学习效果。

  • 教师教学资源生成:对于教师来说,GLM-4-Plus 可以为他们提供教学资源的生成和教学方案的参考。它可以根据教学大纲和知识点,生成教学课件、练习题、测试题等教学资源,帮助教师减轻备课负担。同时,它还可以根据学生的学习情况和反馈,为教师提供教学改进的建议和方法。

4. 智能办公

  • 文档处理与数据分析:在办公场景中,GLM-4-Plus 可以辅助办公人员进行文档处理和数据分析。它可以快速对长篇文档进行总结归纳,提取关键信息,帮助办公人员快速了解文档的主要内容。同时,它还可以对数据进行分析和处理,生成报表、图表等,为决策提供支持。

  • 报告撰写与邮件回复:GLM-4-Plus 还可以帮助办公人员撰写报告、邮件等内容。它可以根据用户提供的信息和要求,生成格式规范、内容准确的报告和邮件。并且,它还可以对已有的报告和邮件进行修改和完善,提高办公效率和工作质量。

五、GLM-4-Plus的快速使用

1、在线体验

GLM-4-Plus在线体验地址:https://open.bigmodel.cn/console/trialcenter?modeCode=glm-4-plus
在这里插入图片描述

2、本地使用

提前申请ZhipuAI的APIKey:https://open.bigmodel.cn/

from zhipuai import ZhipuAI
client = ZhipuAI(api_key="") # 填写您自己的APIKey
response = client.chat.completions.create(
    model="glm-4-plus",  # 填写需要调用的模型编码
    messages=[
        {"role": "system", "content": "你是一个乐于解答各种问题的助手,你的任务是为用户提供专业、准确、有见地的建议。"},
        {"role": "user", "content": "农夫需要把狼、羊和白菜都带过河,但每次只能带一样物品,而且狼和羊不能单独相处,羊和白菜也不能单独相处,问农夫该如何过河。"}
    ],
)
print(response.choices[0].message)

五、总结与展望

GLM-4-Plus 作为一款强大的基座大模型,以其卓越的技术优势、丰富的功能特点和广泛的应用场景,为人工智能的发展和应用带来了新的机遇。它不仅在语言处理、多模态交互和推理能力等方面取得了显著的进步,还为各个领域的用户提供了高效、智能的服务。

随着技术的不断发展,我们相信 GLM-4-Plus 将在未来不断优化和完善,进一步拓展其应用领域,为人类社会的发展做出更大的贡献。同时,我们也期待智谱 AI 能够继续在人工智能领域深入研究,推出更多优秀的产品和技术,推动人工智能技术的不断创新和发展。

相关资料
在线体验:https://open.bigmodel.cn/console/trialcenter?modeCode=glm-4-plus
开发手册:https://open.bigmodel.cn/dev/howuse/glm-4

在这里插入图片描述

🎯🔖更多专栏系列文章:AI大模型提示工程完全指南AI大模型探索之路(零基础入门)AI大模型预训练微调进阶AI大模型开源精选实践AI大模型RAG应用探索实践🔥🔥🔥 其他专栏可以查看博客主页📑

😎 作者介绍:我是寻道AI小兵,资深程序老猿,从业10年+、互联网系统架构师,目前专注于AIGC的探索。
📖 技术交流:欢迎关注【小兵的AI视界】公众号或扫描下方👇二维码,加入技术交流群,开启编程探索之旅。
💘精心准备📚500本编程经典书籍、💎AI专业教程,以及高效AI工具。等你加入,与我们一同成长,共铸辉煌未来。
如果文章内容对您有所触动,别忘了点赞、⭐关注,收藏!加入我,让我们携手同行AI的探索之旅,一起开启智能时代的大门!

### 构建智能体的基础概念 智能体是指能够感知环境并采取行动以实现特定目标的实体[^1]。在现代人工智能领域,特别是自然语言处理(NLP),智能体可以理解复杂的指令并与人类或其他系统交互。 对于智谱平台而言,“自主智能体”的开发基于多模态技术以及强大的基座模型GLM-4-Plus的支持[^2]。该模型不仅具备优秀的文本生成能力,还能够在不同类型的输入之间切换自如,比如文字、图片甚至视频等内容形式;更重要的是它学会了利用外部工具辅助完成任务,这使得所创建出来的智能体更加贴近真实世界的应用场景需求。 ### 利用智谱平台构建智能体的具体方法 为了通过智谱平台建立一个有效的智能体,开发者应该遵循以下几个指导原则: #### 准备阶段 - **选择合适的预训练模型**:根据应用场景挑选最适合的任务导向型或对话式智能体所需的预训练基础架构(GLM系列)。 - **定义具体的目标和功能范围**:明确想要解决的问题是什么样的,例如客服聊天机器人可能侧重于解答常见问题和支持服务请求;而教育辅导类应用则更关注知识点讲解和个人化学习路径规划等特性。 #### 开发流程 - **数据收集与标注**:针对选定的主题领域搜集高质量的数据集,并对其进行细致入微的人工标记以便后续用于微调过程中的监督信号源。 - **定制化调整(Fine-tuning)**:采用迁移学习策略,在已有的大规模通用语料基础上加入行业特异性表达方式及术语,使最终产出的内容既保持广泛适用性又不失专业度。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "path_to_GLM_model" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # 假设已经准备好了一个名为train_dataset的小规模精调数据集 training_args = TrainingArguments( output_dir="./results", num_train_epochs=3, per_device_train_batch_size=8, save_steps=10_000, save_total_limit=2, ) trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset, tokenizer=tokenizer, ) trainer.train() ``` - **集成第三方API和服务接口**:为了让智能体拥有超越单纯语言交流的能力,应当考虑接入诸如搜索引擎、数据库查询或是其他任何形式的信息检索渠道作为补充资源库。 - **持续迭代优化性能表现**:定期评估现有系统的运行状况并通过反馈循环不断改进算法逻辑结构直至达到预期效果为止。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

寻道AI小兵

🐳 感谢你的巨浪支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值