线性二次型调节器(LQR)举例

线性二次型调节器(LQR)

线性二次型调节器(LQR)是一种用于最优控制的问题,其中目标是通过最小化某个代价函数来找到最优控制策略。LQR特别适用于线性系统。为了在人形机器人上应用LQR进行建模,主要步骤包括建立系统模型、定义代价函数以及求解最优控制律。以下是详细步骤:

1. 系统建模

首先,建立人形机器人的线性状态空间模型。一般形式如下:
在这里插入图片描述
其中,x(t) 是状态向量,u(t) 是控制向量,A 是系统矩阵,B 是输入矩阵,C 是输出矩阵,D 是直接传输矩阵。

2. 定义代价函数

LQR的目标是最小化以下二次型代价函数:
在这里插入图片描述

3. 求解Riccati方程

为了找到最优控制律,需要求解Riccati方程:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值